簡易檢索 / 詳目顯示

研究生: 徐宇辰
Xu, Yu-Chen
論文名稱: 奈米纖維素基抗菌材料的研製及其在半月板植入物中的應用
Development of cellulose antibacterial polymer material and its application in meniscus implant
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 60
中文關鍵詞: 奈米纖維素光動力殺菌PTBAEMA3D列印半月板植入物
外文關鍵詞: cellulose nanocrystal, Antimicrobial photodynamic inactivation, PTBAEMA, 3D printing, meniscus implant
相關次數: 點閱:82下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抗菌材料由於其不使細菌產生抗藥性等諸多優異特性,在當今抗菌領域佔有越來越大的比重。奈米纖維素作為地球上最豐富的生物聚合物,具有生物相容性和無毒性等特點。由於奈米纖維素表面有大量的羥基,很容易與不同的分子結合,產生不同的性質。甲基丙烯酸叔丁基氨基乙酯聚合物(poly[2-(tert-butylamino)ethyl methacrylate],PTBAEMA)是優良的抗菌劑,生物毒性很低;赤蘚紅(Erythrosine)是優良的光敏劑,由其觸發的光動力殺菌具有高效的特點,更重要的是這兩者的殺菌機制都不會使細菌產生抗藥性,因此適合與奈米纖維素結合並應用於抗菌領域。本研究對奈米纖維素進行了改性,並接枝上PTBAEMA和赤蘚紅,得到具有抗菌能力的奈米纖維素複合材料,並測試了其抗菌性能,在綠光照射30分鐘或白光照射60分鐘後,可以對大腸桿菌和金黃色葡萄球菌做到完全殺菌,且製成後對這兩菌種光動力殺菌有效時間至少為三周。然後將其與矽膠複合,通過3D列印列印出半月板植入物,測試機械性質後可以符合人體半月板的抗拉強度,對於金黃色葡萄球菌與大腸桿菌也保持著優異的殺菌能力同時有著優秀的生物相容性。

    This experiment was conducted to develop an antimicrobial material with dual bactericidal properties and to explore the feasibility of applying it to human meniscus implants. Using cellulose nanocrystals (CNC) as a carrier for the antimicrobial moiety, the CNC was chemically modified and grafted with the antimicrobial polymer poly[2-(tert-butylamino)ethyl methacrylate] (PTBAEMA) and the photosensitiser erythrosine to obtain the Ery-DACNC-g-PTBAEMA antimicrobial material. The antimicrobial performance of the material was tested. It was found to be completely bactericidal against Escherichia coli and staphylococcus aureus after 30 minutes of green light irradiation or 60 minutes of white light irradiation, and was also consistently bactericidal in the absence of light. The meniscus implant produced by mixing it with silicone and using 3D printing technology conforms to the mechanical strength of a human meniscus implant, while maintaining excellent bactericidal properties, a long effective bactericidal lifespan and good biocompatibility.

    口試合格證明 摘要 I Extended Abstract II 誌謝 XI 總目錄 XII 表目錄 XV 圖目錄 XV 第1章 緒論 1 1-2 文獻回顧 3 1-2-1 殺菌方式 3 1-2-2 抗菌譜 5 1-2-3 抗菌效率 7 1-2-4 3D列印 8 1-3 研究動機 12 1-4 研究目標與歷程 13 第2章 理論依據 14 2-1 兩種抗菌基團可同時複合於CNC的依據 14 2-2 抗菌劑選擇依據 15 2-3 奈米纖維素的載體運用 17 第3章 實驗內容 20 3-1 CNC-g-PTBAEMA的合成 20 3-1-1 CNC-Br合成 20 3-1-2 CNC-g-poly[2-(tert-butylamino)ethyl methacrylate]之合成 20 3-2 Ery-DACNC-g-PTBAEMA合成 21 3-2-1 醛化CNC-g-PTBAEMA 21 3-2-2 產量及醛化效果判定 21 3-2-3 赤蘚紅複合 22 3-3 抗菌測試 22 3-3-1 光源選擇以及細菌培養 22 3-3-2 光動力殺菌測試 23 3-3-3 無光環境殺菌測試 24 3-3-4 PDI可重複使用性檢測 24 3-3-5 可有效殺菌期限檢測 25 3-4 3D列印半月板植入物 25 3-4-1 半月板植入物列印 25 3-4-2 半月板機械性質測試 25 3-4-3 半月板抗菌能力測試 26 3-4-4 可有效殺菌期限檢測 27 3-4-5 生物相容性測試 27 3-5 儀器設備 28 第4章 結果與討論 34 4-1 CNC-g-PTBAEMA合成效果檢測 34 4-1-1 醯化效果分析 34 4-1-2 TA單體聚合度檢測 34 4-1-3 CNC、CNC-Br、CNC-g-PTBAEMA化學元素分析 35 4-1-4 以FTIR分析CNC、CNC-Br、CNC-g-PTBAEMA化學結構 36 4-2 Ery-DACNC-g-PTBAEMA合成效果檢測 37 4-2-1 醛化效果測試 37 4-2-2 赤蘚紅複合效果 37 4-2-3 以FTIR分析CNC-g-PTBAEMA、DACNC-g-PTBAEMA、Ery-DACNC-g-PTBAEMA之化學結構 38 4-3 殺菌測試結果 39 4-3-1 大腸桿菌殺菌 39 4-3-2 金黃色葡萄球菌殺菌 41 4-3-3 PDI可重複使用性檢測 43 4-3-4 可有效殺菌期限檢測 44 4-4 3D列印半月板植入物 46 4-4-1 機械性質 46 4-4-2 3D列印半月板軟骨殺菌測試 48 4-4-3 3D列印半月板軟骨可有效殺菌期限檢測 51 4-4-4 3D列印半月板軟骨生物相容性測試 53 第5章 總結 54 參考文獻 56

    1. Ventola CL: Medical Applications for 3D Printing: Current and Projected Uses. P & T : a peer-reviewed journal for formulary management 2014, 39:704.
    2. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R: Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews 2017:10212.
    3. Ramakrishna S, Mayer J, Wintermantel E, Leong KW: Biomedical applications of polymer-composite materials: a review. Comp Sci Tech 2001, 61:1189-1224.
    4. Luo H, Yin XQ, Tan PF, Gu ZP, Tan L: Polymeric antibacterial materials: design, platforms and applications. Journal of Materials Chemistry B 2021.
    5. Davies J, Davies D: Origins and Evolution of Antibiotic Resistance. Microbiology and molecular biology reviews 2010:74.
    6. Zixiang W, Kun Z, Jinhao W, Siguang Z, Mingxue S, Jianrong L, Liyan W: Research status and prospects of antibacterial materials and agents. Rubber and plastic technology and equipment 2021, 47:8.
    7. Anonymous: Research and Markets Ltd.; China Nutrition Market Report 2007 Report Reveals That China's Domestic Supplement Market Expanded to $6.7 Billion in 2006.
    8. Gaynes R: The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerg Infect Dis. 2017 May;23(5):849-53. doi: 10.3201/eid2305.161556.
    9. Kim BS, Youm S, Kim YK: Sterilization of Harmful Microorganisms in Hydroponic Cultivation Using an Ultraviolet LED Light Source. Sensors and Materials 2020, 32:3773.
    10. Nyangaresi PO, Qin Y, Chen G, Zhang B, Lu Y, Shen L: Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water. Catalysis Today 2019, 335:200-207.
    11. Gerchman Y, Mamane H, Friedman N, Mandelboim M: UV-LED disinfection of Coronavirus: Wavelength effect. Journal of Photochemistry and Photobiology B: Biology 2020, 212:112044.
    12. López M, Palou E, Barbosa C, Tapia M, Cano M: Ultraviolet light and food preservation. Novel food processing technologies 2005:405-421.
    13. Topçu A, Numanoğlu E, Saldamlı İ: Proteolysis and storage stability of UHT milk produced in Turkey. International Dairy Journal 2006, 16:633-638.
    14. Simpson R, Jiménez M, Vega M, Romero A, Costa M: Evaluation of commercial UHT milk and optimization of industrial process. Archivos Latinoamericanos de Nutricion 2000, 50:353-360.
    15. Yang C, Ding X, Ono RJ, Lee H, Hsu LY, Tong YW, Hedrick J, Yang YY: Brush‐like polycarbonates containing dopamine, cations, and PEG providing a broad‐spectrum, antibacterial, and antifouling surface via one‐step coating. Advanced Materials 2014, 26:7346-7351.
    16. Xu Y, Zhao S, Weng Z, Zhang W, Wan X, Cui T, Ye J, Liao L, Wang X: Jelly-inspired injectable guided tissue regeneration strategy with shape auto-matched and dual-light-defined antibacterial/osteogenic pattern switch properties. ACS Applied Materials & Interfaces 2020, 12:54497-54506.
    17. Luo H, Yin X-Q, Tan P-F, Gu Z-P, Liu Z-M, Tan L: Polymeric antibacterial materials: Design, platforms and applications. Journal of Materials Chemistry B 2021, 9:2802-2815.
    18. Khamrai M, Banerjee SL, Paul S, Ghosh AK, Sarkar P, Kundu PP: A mussel mimetic, bioadhesive, antimicrobial patch based on dopamine-modified bacterial cellulose/rGO/Ag NPs: a green approach toward wound-healing applications. ACS Sustainable Chemistry & Engineering 2019, 7:12083-12097.
    19. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M: Silver nanoparticles as potential antiviral agents. Molecules 2011, 16:8894-8918.
    20. Lu L, Sun RW-Y, Chen R, Hui C-K, Ho C-M, Luk JM, Lau GK, Che C-M: Silver nanoparticles inhibit hepatitis B virus replication. Antiviral therapy 2008, 13:253-262.
    21. Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Rodriguez-Padilla C: PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. Journal of nanobiotechnology 2010, 8:1-11.
    22. Liu Z, Liu X, Cui Z, Zheng Y, Li Z, Liang Y, Yuan X, Zhu S, Wu S: Surface photodynamic ion sterilization of ITO-Cu2O/ZnO preventing touch infection. Journal of Materials Science & Technology 2022, 122:10-19.
    23. Du Y, Ma D, Mao J, Yao J, Ma Q, Lu J, Luo F, Luo C, Li L: Improving the antistatic and antibacterial properties of polypropylene via tetrapod-shaped ZnO@ Ag particles. Polymer Testing 2021, 101:107301.
    24. Jing H, Yu Z, Li L: Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2008, 87:33-37.
    25. Zapata PA, Larrea M, Tamayo L, Rabagliati FM, Azócar MI, Páez M: Polyethylene/silver-nanofiber composites: A material for antibacterial films. Materials Science and Engineering: C 2016, 69:1282-1289.
    26. She B, Wan X, Tang J, Deng Y, Zhou X, Xiao C: Size-and morphology-dependent antibacterial properties of cuprous oxide nanoparticle and their synergistic antibacterial effect. Science of Advanced Materials 2016, 8:1074-1078.
    27. Joshi P, Chakraborti S, Chakrabarti P, Singh SP, Ansari Z, Husain M, Shanker V: ZnO nanoparticles as an antibacterial agent against E. coli. Science of Advanced Materials 2012, 4:173-178.
    28. Vangala LM: Size Dependent Antimicrobial Properties of Sugar Encapsulated Gold Nanoparticles. 2012.
    29. Tang J, Song Y, Tanvir S, Anderson WA, Berry RM, Tam KC: Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustainable Chemistry & Engineering 2015, 3:1801-1809.
    30. de Castro DO, Bras J, Gandini A, Belgacem N: Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydrate polymers 2016, 137:1-8.
    31. Marangon CA, Martins VC, Ling MH, Melo CC, Plepis AMG, Meyer RL, Nitschke M: Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS applied materials & interfaces 2020, 12:5488-5499.
    32. Chua CK, Leong KF: 3D Printing and additive manufacturing: Principles and applications (with companion media pack)-of rapid prototyping. World Scientific Publishing Company; 2014.
    33. Rengier F, Mehndiratta A, Von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor H-U, Giesel FL: 3D printing based on imaging data: review of medical applications. International journal of computer assisted radiology and surgery 2010, 5:335-341.
    34. Zein NN, Hanouneh IA, Bishop PD, Samaan M, Eghtesad B, Quintini C, Miller C, Yerian L, Klatte R: Three‐dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver transplantation 2013, 19:1304-1310.
    35. Utela B, Storti D, Anderson R, Ganter M: A review of process development steps for new material systems in three dimensional printing (3DP). Journal of Manufacturing Processes 2008, 10:96-104.
    36. Leong K, Cheah C, Chua C: Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003, 24:2363-2378.
    37. Cheung H-Y, Lau K-T, Lu T-P, Hui D: A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B: Engineering 2007, 38:291-300.
    38. Bhattacharjee N, Urrios A, Kang S, Folch A: The upcoming 3D-printing revolution in microfluidics. Lab on a Chip 2016, 16:1720-1742.
    39. Lee JM, Zhang M, Yeong WY: Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluidics and Nanofluidics 2016, 20:1-15.
    40. Ho CMB, Ng SH, Li KHH, Yoon Y-J: 3D printed microfluidics for biological applications. Lab on a Chip 2015, 15:3627-3637.
    41. Polley C, Distler T, Detsch R, Lund H, Springer A, Boccaccini AR, Seitz H: 3D printing of piezoelectric barium titanate-hydroxyapatite scaffolds with interconnected porosity for bone tissue engineering. Materials 2020, 13:1773.
    42. Zuniga JM: 3D printed antibacterial prostheses. Applied Sciences 2018, 8:1651.
    43. Fripp T, Frewer N, Green L: Method and apparatus for additive manufacturing. Google Patents; 2019.
    44. Awad K, Ahuja N, Fiedler M, Peper S, Brotto L, Brotto M, Varanasi V: Potential Roles of Silicon/Silica‐Based Nanoparticles in 3D Printed Hydrogels for Skeletal Muscle Regeneration. The FASEB Journal 2021, 35.
    45. Luis E, Pan HM, Sing SL, Bajpai R, Song J, Yeong WY: 3D direct printing of silicone meniscus implant using a novel heat-cured extrusion-based printer. Polymers 2020, 12:1031.
    46. Tejo-Otero A, Colly A, Courtial E-J, Fenollosa-Artés F, Buj-Corral I, Marquette CA: Soft-tissue-mimicking using silicones for the manufacturing of soft phantoms by fresh 3D printing. Rapid Prototyping Journal 2021, 28:285-296.
    47. Eyley S, Thielemans W: Surface modification of cellulose nanocrystals. Nanoscale 2014, 6:7764-7779.
    48. Kim U-J, Kuga S, Wada M, Okano T, Kondo T: Periodate oxidation of crystalline cellulose. Biomacromolecules 2000, 1:488-492.
    49. Bunton C, Shiner V: 321. Periodate oxidation of 1, 2-diols, diketones, and hydroxy-ketones: the use of oxygen-18 as a tracer. Journal of the Chemical Society (Resumed) 1960:1593-1598.
    50. Wood S, Metcalf D, Devine D, Robinson C: Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. Journal of antimicrobial chemotherapy 2006, 57:680-684.
    51. Yassunaka NN, de Freitas CF, Rabello BR, Santos PR, Caetano W, Hioka N, Nakamura TU, de Abreu Filho BA, Mikcha JMG: Photodynamic inactivation mediated by erythrosine and its derivatives on foodborne pathogens and spoilage bacteria. Current microbiology 2015, 71:243-251.
    52. Dai T, Huang Y-Y, Hamblin MR: Photodynamic therapy for localized infections—state of the art. Photodiagnosis and photodynamic therapy 2009, 6:170-188.
    53. Vera DMA, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GP: Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochemistry and photobiology 2012, 88:499-511.
    54. Hamblin MR: Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Current opinion in microbiology 2016, 33:67-73.
    55. Giuliani F, Martinelli M, Cocchi A, Arbia D, Fantetti L, Roncucci G: In vitro resistance selection studies of RLP068/Cl, a new Zn (II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrobial agents and chemotherapy 2010, 54:637-642.
    56. Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T: Antimicrobial photodynamic therapy: Latest developments with a focus on combinatory strategies. Pharmaceutics 2021, 13:1995.
    57. Yiling W: Preparation and Antibacterial Properties of Antibacterial Polymer Grafted Nanocellulose Composite Materials. Master's degree,National Sun Yat sen University, Research Institute of Materials and Optoelectronics Science Department; 2021.
    58. Chen C-K, Lee M-C, Lin Z-I, Lee C-A, Tung Y-C, Lou C-W, Law W-C, Chen N-T, Lin K-YA, Lin J-H: Intensifying the antimicrobial activity of poly [2-(tert-butylamino) ethyl methacrylate]/polylactide composites by tailoring their chemical and physical structures. Molecular Pharmaceutics 2018, 16:709-723.
    59. Li J, Cha R, Mou K, Zhao X, Long K, Luo H, Zhou F, Jiang X: Nanocellulose‐based antibacterial materials. Advanced healthcare materials 2018, 7:1800334.
    60. Badshah M, Ullah H, Wahid F, Khan T: Bacterial Cellulose-Based Metallic Green Nanocomposites for Biomedical and Pharmaceutical Applications. Current Pharmaceutical Design 2020, 26:5866-5880.
    61. Sgarlata C, Dal Poggetto G, Piccolo F, Catauro M, Traven K, Češnovar M, Nguyen H, Yliniemi J, Barbieri L, Ducman V: Antibacterial properties and cytotoxicity of 100% waste derived alkali activated materials: slags and stone wool-based binders. Frontiers in Materials 2021, 8:689290.
    62. Shao W, Wu J, Liu H, Ye S, Jiang L, Liu X: Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohydrate polymers 2017, 178:270-276.
    63. Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA: Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 2011, 12:3528-3539.
    64. Li R, Jiang Q, Ren X, Xie Z, Huang T-S: Electrospun non-leaching biocombatible antimicrobial cellulose acetate nanofibrous mats. Journal of Industrial and Engineering Chemistry 2015, 27:315-321.
    65. Yang J, Hu D, Li W, Yi S: Highly efficient microreactors with simultaneous separation of catalysts and products in deep desulfurization. Chemical Engineering Journal 2015, 267:93-101.
    66. Ouyang S-W: Development of Photodynamic Antibacterial Cellulose Nanocrystals Coating and its Application in Packaging Paper. Master‘s degree,National Cheng Kung University, Department of Mechanical Engineering; 2020.
    67. Zhang Q, Xu Z, Zhang X, Liu C, Yang R, Sun Y, Zhang Y, Liu W: 3D printed high‐strength supramolecular polymer hydrogel‐cushioned radially and circumferentially oriented meniscus substitute. Advanced Functional Materials 2022, 32:2200360.
    68. Tanaka ML, Vest N, Ferguson CM, Gatenholm P: Comparison of biomechanical properties of native menisci and bacterial cellulose implant. International Journal of Polymeric Materials and Polymeric Biomaterials 2014, 63:891-897.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE