簡易檢索 / 詳目顯示

研究生: 張烜琥
Chang, Hsuan-Hu
論文名稱: 多種錫鉛及無鉛銲錫材料之動態衝擊特性研究
Analysis of the Dynamic Impact Behavior for Lead-tin and Lead-free Solders at High Strain Rates
指導教授: 鄭泗滄
Jenq, Syh-Tsang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 147
中文關鍵詞: 應變率強化效應無鉛銲錫高應變率應力指數SHPB實驗架構
外文關鍵詞: lead-free solder, high strain rates, SHPB technique, stress exponent, strain rate hardening
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在應用分離式霍普金森桿(split Hopkinson pressure bar, SHPB)實驗架構,來探討多種銲錫材料在高應變率下的材料行為。本論文中所研究之銲錫材料,涵蓋了傳統封裝產業中所使用之錫鉛合金Sn63Pb37、Sn10Pb90,以及因應國際上環保意識的需求所產生之無鉛銲錫合金SAC105、SAC305,以及SAC405。實驗中之各種材料在動態實驗中承受了應變率範圍400 ~ 3,000 s-1的條件,並在高應變率下的動態應力-應變曲線中顯現出了三階段的變形:彈性-應變硬化-飽和應力。除了高應變率材料特性外,本研究也嘗試量測銲錫材料在擬靜態壓縮實驗中之低應變率特性,並與高應變率下之實驗結果作比較,以探討應變速率對於各種銲錫材料在機械性質上產生的影響。此外,本研究也初步探討了試片製程中冷卻速率對於無鉛銲錫SAC305之高應變率機械性質的影響,並藉由光學顯微鏡的觀察來評估SAC305材料微觀性質的差異對於動態特性造成的改變。結果顯示較快的冷卻速率能夠提升材料在動態應力-應變曲線中的流應力值。總體而言,實驗結果經由巨觀的合金成分以及微觀的結構組成,分析與比較其間的差異性,藉以評估其對銲錫材料動態特性之影響,期許能建構出完整的銲錫材料資料庫,以利工程師在錫球接點可靠度上之分析及預測。

    The main goal of this thesis is to study the high-strain-rate bulk properties of several kinds of solder materials with the use of SHPB (split Hopkinson pressure bar) apparatus. The solder materials in current study include traditional lead-tin solders Sn63Pb37, Sn10Pb90, and lead-free solders SAC105, SAC305, and SAC405 which become an inevitable tendency due to the awareness of environmental protection. Specimens were tested at strain rates range from 400 ~ 3,000 s-1 during high strain rate tests. The tested samples experienced a deformed process with three steps: elasticity, strain hardening, and saturation stress. Besides, we try to measure the quasi-static properties of solder materials and compare the results with high strain rate tests in order to discuss the strain-rate effect on the solder materials studied. Moreover, the cooling-rate effect of SAC305 at high strain rates was primarily discussed with SHPB tests and OM observations. The results showed that faster cooling rate could enhance the flow stress on stress-strain curves. Overall, we concluded the results from the compositions of different solder materials and microstructure observation. With the establishment of the database for solder materials, the solder joint reliability can be estimated efficiently and precisely.

    簽名頁 授權書 誌謝 全文中文摘要 全文英文摘要 目錄 表目錄 I 圖目錄 II 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 1-3 研究目的 3 1-4 研究方法與流程 3 1-5 論文大綱 4 第二章 文獻回顧 6 2-1 目前無鉛銲錫之研究進展 6 2-2 銲錫材料之高應變率特性研究進展 10 第三章 實驗理論 13 3-1 一維縱向彈性應力波傳理論 13 3-1-1 長桿中之一維縱向彈性應力波傳理論 13 3-1-2 一維波動方程式之通解 - D’Alembert’s solution 16 3-1-3 一維縱向波在兩介面間的反射以及穿透行為 18 3-1-4 長桿中應力波之形成 20 3-2 分離式霍普金森壓縮桿之原理及應用 24 3-3 霍普金森桿實驗方法之改良與進展 28 3-3-1 試片內部之應力平衡分析 - 一波與二波法 28 3-3-2 波散效應之修正 29 3-3-3 波形整形法 30 3-3-4 桿件材料之影響 32 3-3-5 試片之慣性、尺寸及摩擦效應 32 3-4 構成方程式 33 3-5 不同應變率下之實驗方法 37 3-6 理論溫升量探討 39 第四章 實驗方法及流程 46 4-1 試片製備 46 4-2 實驗設備 47 4-3 動態壓縮試驗 49 4-3-1 實驗前之入射應力波強度以及應變、應變率之預估 50 4-3-2 波形整形法 51 4-3-3 桿件共軸測試 52 4-3-4 桿件材質 52 4-3-5 一波與二波法 53 4-3-6 FFT濾波 53 4-4 擬靜態壓縮試驗 54 4-5 金相試片觀察 54 第五章 實驗結果與討論 62 5-1 動態壓縮試驗 62 5-1-1 SAC305之高應變率實驗 62 5-1-2 SAC105之高應變率實驗 74 5-1-3 SAC405之高應變率實驗 78 5-1-4 Sn63Pb37之高應變率實驗 79 5-1-5 Sn10Pb90之高應變率實驗 81 5-2 擬靜態壓縮試驗 82 5-2-1 SAC305之擬靜態實驗 83 5-2-2 SAC105之擬靜態實驗 86 5-2-3 SAC405之擬靜態實驗 87 5-2-4 Sn63Pb37之擬靜態實驗 87 5-2-5 Sn10Pb90之擬靜態實驗 88 5-3 應變率對銲錫材料特性之影響 89 5-3-1 應變率對SAC305之影響 89 5-3-2 應變率對SAC105之影響 90 5-3-3 應變率對SAC405之影響 91 5-3-4 應變率對Sn63Pb37之影響 92 5-3-5 應變率對Sn10Pb90之影響 93 5-4 實驗結果探討 94 第六章 結論 135 參考文獻 138 自述 147

    1. S. K. W. Seah, C. T. Lim, E. H. Wong, V. B. C. Tan, V. P. W. Shim, “Mechanical Response of PCBs in Portable Electronic Products During Drop Impact”, 4th Electronics Packaging Technology Conference, pp.120-125, 2002.
    2. T. Y. Tee, H. S. Ng, C. T. Lim, E. Pek, and Z. Zhong, “Impact Life Prediction Modeling of TFBGA Packages Under Board Level Drop Test”, Microelectronics Reliability, Vol.44, No.7, pp.1131-1142, 2004.
    3. J. H. L. Pang, F. X. Che, “Drop Impact Analysis of Sn-Ag-Cu Solder Joints Using Dynamic High-strain Rate Plastic Strain as the Impact Damage Driving Force”, 56th Electronic Components and Technology Conference, pp.49-54, 2006.
    4. Y. S. Lai, P. F. Yang and C. L. Yeh, “Experimental Studies of Board-level Reliability of Chip-scale Packages Subjected to JEDEC Drop Test Condition”, Microelectronics Reliability, Vol.46, No.2-4, pp.645-650, 2006.
    5. S. T. Jenq, H. S. Sheu, C. L. Yeh, Y. S. Lai and J. D. Wu, “High-G Drop Impact Response and Failure Analysis of a Chip Packaged Printed Circuit Board”, International Journal of Impact Engineering, Vol.34, No.10, pp.1655-1667, 2007.
    6. P. T. Vianco, J. A. Rejent, and J. J. Martin, “The Compression Stress-strain Behavior of Sn-Ag-Cu Solder”, JOM, pp.50-55, 2003.
    7. P. T. Vianco, J. A. Rejent, and A. C. Kilgo, “Time-independent Mechanical and Physical Properties of the Ternary 95.5Sn-3.9Ag-0.6Cu Solder”, Journal of Electronic Materials, Vol.32, No.2, pp.142-151, 2003.
    8. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys”, Materials Science and Engineering A333, pp.106-114, 2002.
    9. T.-M. K. Korhonen, P. Turpeinen, L. P. Lehman, B. Bowman, G. H. Thiel, R. C. Parkes, M. A. Korhonen, D. W. Henderson, and K. J. Puttlitz, “Mechanical Properties of Near-Eutectic Sn-Ag-Cu Alloy over a Wide Range of Temperatures and Strain Rates”, Journal of Electronic Materials, Vol.33, No.12, pp.1581-1588, 2004.
    10. S. K. Kang, W. K. Choi, D. Y. Shih, D. W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K. J. Puttlitz, “Ag3Sn Plate Formation in the Solidification of Near Ternary Eutectic Sn-Ag-Cu Alloys”, JOM, pp.61-65, 2003.
    11. S. K. Kang, P. A. Lauro, D.-Y. Shih, D. W. Henderson, and K. J. Puttlitz, “Microstructure and Mechanical Properties of Lead-free Solders and Solder Joints Used in Microelectronic Applications”, IBM Journal of Research and Development, Vol.49, No.4/5, pp.607-620, 2005.
    12. F. Ochoa, J. J. Williams, and N. Chawla, “The Effects of Cooling Rate on Microstructure and Mechanical Behavior of Sn-3.5Ag Solder”, JOM, pp.56-60, 2003.
    13. L. Garner, S. Sane, D. Suh, T. Byrne, A. Dani, T. Martin, M. Mello, M. Patel, R. Williams, “Finding Solutions to the Challenges in Package Interconnect Reliability”, Intel Technology Journal, Vol.9, pp.297-308, 2005.
    14. K. C. Ong, V. B. C. Tan, C. T. Lim, E. H. Wong, and X. W. Zhang, “Dynamic Materials Testing and Modeling of Solder Interconnects”, 2004 Electronic Components and Technology Conference, pp.1075-1079, 2004.
    15. C. R. Siviour, S. M. Walley, W. G. Proud, and J. E. Field, “Mechanical Properties of SnPb and Lead-free Solders at High Rates of Strain”, Journal of Physics D: Applied Physics, Vol.38, No.22, pp.4131-4139, 2005.
    16. B. Wang and S. Yi, “Dynamic Plastic Behavior of 63 wt% Sn 37 wt% Pb Eutectic Solder under High Strain Rates”, Journal of Material Science Letters, 21, pp.697-698, 2002.
    17. J. A. Zukas, T. Nicholas, H. F. Swift, L. B. Greszczuk, D. R. Curran, “Impact Dynamics”, John Wiley & Sons, Inc., New York, pp.9-10, pp.15-17, 1982.
    18. H. Kolsky, “Stress Waves in Solids”, Dover Publications, Inc., New York, pp.41-54, 1963.
    19. K. F. Graff, “Wave Motion in Elastic Solids”, Dover Publications, Inc., New York, pp.13-14, pp.76-79, pp.80-84,1975.
    20. J. F. Doyle, “Wave Propagation in Structures”, Springer-Verlag New York, Inc., New York, pp.44-45, 1997.
    21. W. Johnson, “Impact Strength of Materials”, Edward Arnold, London, pp.34-35, 1972.
    22. H. Kolsky, “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading”, Proc. Phys. Soc. B62 pp.676-700, 1949.
    23. U.S. Lindholm, L.M. Yeakley, “High Strain-rate Testing: Tension and Compression”, Experimental Mechanics, Vol.8, No.1, pp.1-9, 1968.
    24. K. F. Graff, “Wave Motion in Elastic Solids”, Dover Publications, Inc., New York, pp.130-133, 1975.
    25. J. A. Zukas, T. Nicholas, H. F. Swift, L. B. Greszczuk, D. R. Curran, “Impact Dynamics”, John Wiley & Sons, Inc., New York, pp.287-289, 1982.
    26. S. T. Jenq and S. L. Sheu, “High Strain-rate Compressional Behaviors of Stitched and Unstitched GFRP Composite Laminates with Radial Constraints”, J. Composite Structures, Vol.25, pp.427-438, 1993.
    27. S. T. Jenq and S. L. Sheu, “An Experimental and Numerical Analysis of High Strain-rate Compressional Behaviour of 6061-O Aluminum Alloys”, J. Computers & Structures, Vol.52, No.1, pp.27-34, 1994.
    28. F. E. Hauser, “Techniques for Measuring Stress-Strain Relations at High Strain Rate”, Exp. Mech., Vol.6, No.8, pp.395-402, 1966.
    29. G. E. Dieter, “Mechanical Metallurgy”, McGraw-Hill Book Company, 1986.
    30. G. T. Gary III, “Classic Split-Hopkinson Pressure Bar Testing” ASM Handbook, Vol.8, Mechanical Testing and Evaluation, ASM International, Materials Park, pp.1027-1068, 2000.
    31. W. Chen, B. Song, D. J. Frew and M. J. Forrestal, Dynamic Small Strain Measurements of a Metal Specimen with a Split Hopkinson Pressure Bar, Experimental Mechanics, Vol.43, No.1, pp.20-23, 2003.
    32. D. A. Gorham, “A Numerical Method for the Correction of Dispersion in Pressure Bar Signals”, Journal of Physics E: Scientific Instruments, Vol.16, pp.477-479, 1983.
    33. W. Chen, B. Zhang, and M. J. Forrestal, “A Split Hopkinson Bar Technique for Low-impedance Materials, Experimental Mechanics”, Vol.39, No.2, pp.81-85, 1999.
    34. D. J. Frew, M. J. Forrestal, and W. Chen, “Pulse Shaping Techniques for Testing Brittle Materials with a Split Hopkinson Pressure Bar”, Experimental Mechanics, Vol.42, No.1, pp.93-106, 2002.
    35. D. J. Frew, M. J. Forrestal, and W. Chen, “Pulse Shaping Techniques for Testing Elastic-plastic Materials with a Split Hopkinson Pressure Bar”, Experimental Mechanics, Vol.45, No.2, pp.186-195, 2005.
    36. S. Nemat-Nasser, J. Y. Choi, W. G. Guo, and J. B. Isaacs, “Very High Strain-rate Response of a NiTi Shape-memory Alloy”, Mechanics of Materials, Vol.37, pp.287-298, 2005.
    37. S. Yadav, D. R. Chichili, and K. T. Ramesh, “The Mechanical Response of a 6061-T6 Al/Al2O3 Metal Matrix Composite at High Rates of Deformation”, Acta Metallurgica et Materialia, Vol.43, pp.4453-4464, 1995.
    38. G. T. Gary III, “Split-Hopkinson Pressure Bar Testing of Soft Materials” ASM Handbook, Vol.8, Mechanical Testing and Evaluation, ASM International, Materials Park, pp.1093-1114, 2000.
    39. 徐明利, 張若棋, 張光瑩, “SHPB實驗中試件內早期應力平衡分析”, 爆炸與衝擊, Vol.23, No.3, pp.235-240, 2003.
    40. D. A. Gorham, “Specimen inertia in high strain rate compression”, Journal of Physics D: Applied Physics, Vol.22, pp.1888-1893, 1989.
    41. D. A. Gorham, “The effect of specimen dimensions on high strain rate compression measurements of copper”, Journal of Physics D: Applied Physics, Vol.24, pp.1489-1492, 1991.
    42. B. Song, and W. Chen, “Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials”, Experimental Mechanics, Vol.44, No.3, 2004.
    43. P. Ludwik, “Elemente der Technologischen Mechanik”, Springer-Verlag OHG, Berlin, 1909.
    44. G. R. Cowper, and P. S. Symonds, “Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams”, Brown University Division of Applied Mathematics Report 28, 1957.
    45. G. R. Johnson, and W. H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures”, Proceedings of the 7th International Symposium on Ballistics, Hague, Netherlands, pp.541-547, 1983,
    46. G. R. Johnson, and T. J. Holmquist, “Evaluation of Cylinder-impact Test Data for Constitutive Model Constants”, Journal of Applied Physics, Vol.64, pp.3901-3910, 1988.
    47. F. J. Zerilli, and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Materials Dynamics Calculations”, Journal of Applied Physics, Vol.61, pp.1816-1825, 1987.
    48. F. J. Zerilli, and R. W. Armstrong, “Description of Tantalum Deformation Behavior by Dislocation Mechanics Based Constitutive Equations”, Journal of Applied Physics, Vol.68, pp.1580-1591, 1990.
    49. F J Zerilli, “Dislocation Mechanics-Based Constitutive Equations”, Metallurgical and Materials Transactions A, Vol.35A, pp.2547-2555, 2004.
    50. U. S. Lindholm, Measurement of Mechanical Properties, Techniques of Metals Research, Vol.5, Part I, edited by R. F. Bunshah, Interscience Publishers, Inc., New York, pp.199–271, 1971.
    51. D. A. Gorham, P. H. Pope, J. E. Field, “An Improved Method for Compressive Stress-strain Measurements at Very High Strain Rates”, Proceedings: Mathematical and Physical Sciences, Vol.438, No.1902, pp.153-170, 1992.
    52. E. Bayraktar, S. Altintas, “Some Problems in Steel Sheet Forming Processes”, Journal of Materials Processing Technology, pp.83-89, 1998.
    53. M. M. Al-Mousawi, S. R. Reid, and W. F. Deans, “The Use of the Split Hopkinson Pressure Bar Techniques in High Strain Rate Materials Testing”, Proceedings of the Institution of Mechanical Engineers, Part C, Vol.211, No.4, pp.273-292, 1997.
    54. http://www.accurus.com.tw/
    55. C. Zener and J. H. Hollomon, “Effect of Strain Rate upon Plastic Flow of Steel”, Journal of Applied Physics, 15, pp.22-32, 1944.
    56. Y. Bai and B. Dodd, “Adiabatic Shear Localization”, Pergamon Press, Oxford, pp.1-5, 1992.
    57. “Standard Test Methods for Compression Testing of Metallic Materials at Room Temperature”, ASTM E9-89a (Reapproved 2000).
    58. R. Darveaux and K. Banerji, “Constitutive Relations for Tin-based Solder Joints”, IEEE Transactions Components, Hybrids, and Manufacturing Technology, Vol.15, pp.1013-1024, 1992.
    59. R. Mahmudi, A. Rezaee-Bazzaz, and H. R. Banaie-Fard, “Investigation of Stress Exponent in the Room-temperature Creep of Sn–40Pb–2.5Sb Solder Alloy”, Journal of Alloys and Compounds, Vol.429, No.21, pp.192-197, 2007.
    60. W. J. Plumbridge and C. R. Gagg, “Effects of Strain Rate and Temperature on the Stress-strain Response of Solder Alloys”, Journal of Materials Science: Materials in Electronics, Vol.10, No.5-6, 1999.
    61. I. Shohji, T. Yoshida, T. Takahashi, and S. Hioki, “Tensile Properties of Sn-Ag Based Lead-free Solders and Strain Rate Sensitivity”, Materials Science and Engineering A, Vol.366, pp.50-55, 2004.
    62. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys”, Journal of Electronic Materials, Vol.29, No.10, pp.1122-1236, 2000.

    下載圖示 校內:2009-08-27公開
    校外:2009-08-27公開
    QR CODE