| 研究生: |
甘帕格 GHANTASALA PRANAV BHARGAV |
|---|---|
| 論文名稱: |
以CALPHAD方法建構包含η'介穩相之 Al-Zn-Mg-Cu四元熱力學資料庫 CALPHAD Thermodynamic Modeling for Al-Zn-Mg-Cu Quaternary System with η' Metastable Phase Description |
| 指導教授: |
林士剛
Lin, Shih-Kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | Al-Zn-Mg-Cu 四元系統 、η' 介穩態析出物 、SAXS 、DSC 、TEM |
| 外文關鍵詞: | Al-Zn-Mg-Cu quaternary system, η' metastable phase, SAXS, DSC, TEM |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋁合金為汽車和航空產業之重要開發材料,為減少車體重量以增加汽車里程,汽車行業正在積極開發新興鋁合金材料。鋁合金部件的完整製造鏈包含精煉、鑄造、均質化、軋製/擠壓以及熱處理。而化學或熱力學驅動力、界面能、機械驅動力等是每個加工步驟的重要驅動力。因此鋁合金材料之研究與開發於化學和熱力學之理解至關重要。
鋁合金熱化學特性和相圖之研究有助於開發新的鋁合金成分和優化工藝。而CALPHAD計算熱力學方法是研究合金熱力學的最有效方法之一,透過建立完善的鋁合金熱力學資料庫有助於釐清複雜合金系統的相平衡和熱力學性質。
因此本研究聚焦於AA7075 鋁合金,通過結合實驗和熱力學計算方法來建立包含η' 介穩態析出物之 Al-Zn-Mg-Cu 四元熱力學資料庫,本研究彙整了文獻可得之Al-Cu、Al-Mg、Al-Zn、Cu-Mg、Cu-Zn、Mg-Zn、Al-Cu-Mg、Al-Zn-Mg、Al-Zn-Cu和Cu-Mg-Zn二元和三元系統。並採用不同的實驗技術分析Al-Zn-Mg三元系統中強度最高的η' 介穩態析出物,如透過TEM尋找析出物與鋁基底成分以及析出物尺寸,通過DSC差示掃描量熱法分析析出物體積分率,通過SAXS分析析出物尺寸和體積分率。並整合上述實驗結果獲得在 120℃ 等溫截面,生成了包含η'介穩態析出物之 Al-Zn-Mg-Cu 四元熱力學資料庫。
此包含介穩態析出物之 Al-Zn-Mg-Cu 四元熱力學資料庫可用於分析 AA7075鋁合金在凝固和平衡條件下的相平衡、析出物類型及其析出物體積分率。
關鍵字: Al-Zn-Mg-Cu 四元系統, η'介穩態析出物, SAXS, DSC,TEM
Aluminum alloys are prominently used in vehicle production and aviation. The automobile industry is experiencing a renaissance of aluminum research due to the necessity to increase gas mileage and mass diminution. The complete manufacturing chain of Al alloy components begins with refining, casting, homogenization, rolling/extrusion, and lastly heat treatment. Chemical or thermodynamic driving forces, interfacial energy, mechanical driving forces, and so on are the driving forces for each processing step. Thermodynamics relating to chemical processes and phase transitions is thus crucial.
The study of Al alloy thermochemical characteristics and phase diagrams are useful for developing new Al alloy compositions and optimizing processes. One of the most efficient approaches to study alloy thermodynamics is to use the CALPHAD (CALculation of PHAse Diagram) method. The phase equilibria and thermodynamic properties of complicated alloy systems can be determined using a well-developed Al alloy thermodynamic database.
The current work focuses on the construction of a thermodynamic database for the Al-Zn-Mg-Cu Quaternary system and thermodynamic modeling of η' metastable phase via a combined experimental and thermodynamic modeling method as a foundation for understanding numerous processes in Al 7075 alloys. The thermodynamic descriptions of the Al-Cu, Al-Mg, Al-Zn, Cu-Mg, Cu-Zn, Mg-Zn, Al-Cu-Mg, Al-Zn-Mg, Al-Zn-Cu, and Cu-Mg-Zn stable phase binary and ternary systems were upgraded. Different experimental techniques are used to find the most strengthening η' metastable phase in Al-Zn-Mg ternary system, such as Transmission Electron Microscopy to find precipitate, matrix composition, and precipitate size, Differential Scanning Calorimetry to find volume fraction, and small-angle X-ray Scattering to find the precipitate size and volume fraction. At an isothermal section of 120C, the thermodynamic description of the η' metastable phase description was generated. Furthermore, the binary, ternary, and metastable phase descriptions were combined with the Al-Zn-Mg-Cu Quaternary system.
The generated thermodynamic database with η' the metastable phase was used to analyze phase equilibrium, types of precipitations, and their amounts under both solidification and equilibrium circumstances for the Al7075 series alloys.
Keywords: Al-Zn-Mg-Cu quaternary system, η' metastable phase, SAXS, DSC, TEM.
[1] R. Gupta, R. Panda, A. Mukhopadhyay, V. A. Kumar, P. Sankaravelayutham, and K. M. George, "Study of aluminum alloy AA2219 after heat treatment," Metal Science and Heat Treatment, vol. 57, no. 5, pp. 350-353, 2015.
[2] F. Cao, J. Zheng, Y. Jiang, B. Chen, Y. Wang, and T. Hu, "Experimental and DFT characterization of η′ nano-phase and its interfaces in AlZnMgCu alloys," Acta Materialia, vol. 164, pp. 207-219, 2019.
[3] P. Spencer, "A brief history of CALPHAD," Calphad, vol. 32, no. 1, pp. 1-8, 2008.
[4] J. J. v. Laar, "Die Schmelz- oder Erstarrungskurven bei binären Systemen, wenn die feste Phase ein Gemisch (amorphe feste Lösung oder Mischkristalle) der beiden Komponenten ist," Zeitschrift für Physikalische Chemie, vol. 64U, no. 1, pp. 257-297, 1908, doi: doi:10.1515/zpch-1908-6417.
[5] L. Kaufman and H. Bernstein, "Computer calculation of phase diagrams. With special reference to refractory metals," 1970.
[6] B. Sundman, H. Lukas, and S. Fries, Computational thermodynamics: the Calphad method. Cambridge university press New York, 2007.
[7] Z.-K. Liu, "First-principles calculations and CALPHAD modeling of thermodynamics," Journal of phase equilibria and diffusion, vol. 30, no. 5, pp. 517-534, 2009.
[8] I. o. Metals and G. V. Raynor, The Equilibrium Diagram of the System Aluminium-copper. Institute of Metals, 1944.
[9] J. L. Murray, "The aluminium-copper system," International metals reviews, vol. 30, no. 1, pp. 211-234, 1985.
[10] X. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, "Phase equilibria in the Cu-rich portion of the Cu–Al binary system," Journal of alloys and compounds, vol. 264, no. 1-2, pp. 201-208, 1998.
[11] N. Ponweiser, C. L. Lengauer, and K. W. Richter, "Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η1-Al1− δCu," Intermetallics, vol. 19, no. 11, pp. 1737-1746, 2011.
[12] Al-Cu Binary Phase Diagram Evaluation · Phase diagrams, crystallographic and thermodynamic data: Datasheet from MSI Eureka in SpringerMaterials (https://materials.springer.com/msi/docs/sm_msi_r_20_011492_01). MSI Materials Science International Services GmbH. [Online]. Available: https://materials.springer.com/msi/docs/sm_msi_r_20_011492_01
[13] X. Ma, A. Rüdiger, H. Liebertz, U. Köster, and W. Liu, "A new structural variant of ζ-Al3Cu4 and its orientation relationship with the cubic γ-Al4Cu9," Scripta materialia, vol. 39, no. 6, pp. 707-714, 1998.
[14] S.-M. Liang and R. Schmid-Fetzer, "Thermodynamic assessment of the Al–Cu–Zn system, part II: Al–Cu binary system," Calphad, vol. 51, pp. 252-260, 2015.
[15] J. L. Murray, "The Al− Mg (aluminum− magnesium) system," Journal of Phase Equilibria, vol. 3, no. 1, pp. 60-74, 1982.
[16] W. Hume-Rothery and E. Rounsefell, "The system magnesium-zinc," Journal of the Institute of Metals, vol. 41, pp. 119-138, 1929.
[17] M. Mezbahul-Islam, A. Mostafa, and M. Medraj, "Essential magnesium alloys binary phase diagrams and their thermochemical data," Journal of Materials, vol. 2014, 2014.
[18] B. L. Tiwari, "Thermodynamic properties of liquid Al-Mg alloys measured by the Emf method," Metallurgical Transactions A, vol. 18, no. 9, pp. 1645-1651, 1987.
[19] Y. Bhatt and S. Garg, "Thermodynamic study of liquid aluminum-magnesium alloys by vapor pressure measurements," Metallurgical Transactions B, vol. 7, no. 2, pp. 271-275, 1976.
[20] J. Juneja, K. Abraham, and G. Iyengar, "Thermodynamic study of liquid magnesium-aluminium alloys by vapour pressure measurement using the boiling point method," Scripta metallurgica, vol. 20, no. 2, pp. 177-180, 1986.
[21] R. Agarwal and F. Sommer, "Calorimetric Measurements of Liquid Al-Mg Alloys/Kalorimetrische Untersuchungen flüssiger Aluminium-Magnesium-Legierungen," International Journal of Materials Research, vol. 82, no. 2, pp. 118-120, 1991.
[22] A. T. D. I.Ansara, M. H. Rand. Thermochemical database for light metal alloys.
[23] J. Murray, "The Al− Zn (aluminum-zinc) system," Bulletin of Alloy Phase Diagrams, vol. 4, no. 1, pp. 55-73, 1983.
[24] S. Kogo and S. Hirosawa, "Thermodynamic Assessment and Determination of Spinodal Lines for Al-Zn Binary System," in Materials Science Forum, 2014, vol. 794: Trans Tech Publ, pp. 634-639.
[25] S. an Mey, "Reevaluation of the Al-Zn system," International Journal of Materials Research, vol. 84, no. 7, pp. 451-455, 1993.
[26] P. Spencer, "A thermodynamic evaluation of the Cu-Zn system," Calphad, vol. 10, no. 2, pp. 175-185, 1986.
[27] M. Kowalski and P. Spencer, "Thermodynamic reevaluation of the Cu-Zn system," Journal of phase equilibria, vol. 14, no. 4, pp. 432-438, 1993.
[28] H. Liang and Y. Chang, "A thermodynamic description for the Al-Cu-Zn system," Journal of Phase Equilibria, vol. 19, no. 1, pp. 25-37, 1998.
[29] N. David, J. Fiorani, M. Vilasi, and J. Hertz, "Thermodynamic reevaluation of the Cu-Zn system by electromotive force measurements in the zinc-rich part," Journal of phase equilibria, vol. 24, no. 3, pp. 240-248, 2003.
[30] W. Gierlotka and S.-w. Chen, "Thermodynamic descriptions of the Cu–Zn system," Journal of Materials Research, vol. 23, no. 1, pp. 258-263, 2008.
[31] S.-M. Liang, H.-M. Hsiao, and R. Schmid-Fetzer, "Thermodynamic assessment of the Al–Cu–Zn system, part I: Cu–Zn binary system," Calphad, vol. 51, pp. 224-232, 2015.
[32] O. Boudouard, "On the alloys of copper and magnesium," Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, vol. 135, pp. 794-796, 1902.
[33] R. Sahmen, "Alloys of copper with cobalt, iron, manganese and magnesium," Zeitschrift für Anorganische und Allgemeine Chemie, vol. 57, pp. 1-33, 1908.
[34] G. Urazov, "Alloys of copper and magnesium," Zhurnal Russkogo Fiziko-Khimicheskogo Obschestva, vol. 39, pp. 1556-1581, 1907.
[35] A. Nayeb-Hashemi and J. Clark, "The Cu-Mg (copper-magnesium) system," Bulletin of Alloy Phase Diagrams, vol. 5, no. 1, pp. 36-43, 1984.
[36] C. Coughhanowr, I. Ansara, R. Luoma, M. Hämäläinen, and H. Lukas, "Assessment of the Cu-Mg system," Zeitschrift fuer Metallkunde;(Germany), vol. 82, no. 7, 1991.
[37] O. Redlich and A. Kister, "Thermodynamics of nonelectrolyte solutions-xyt relations in a binary system," Industrial & Engineering Chemistry, vol. 40, no. 2, pp. 341-345, 1948.
[38] S. Wasiur-Rahman and M. Medraj, "Critical assessment and thermodynamic modeling of the binary Mg–Zn, Ca–Zn and ternary Mg–Ca–Zn systems," Intermetallics, vol. 17, no. 10, pp. 847-864, 2009.
[39] P. Ghosh, M. Mezbahul-Islam, and M. Medraj, "Critical assessment and thermodynamic modeling of Mg–zn, Mg–sn, Sn–Zn and Mg–Sn–Zn systems," Calphad, vol. 36, pp. 28-43, 2012.
[40] R. Agarwal et al., "Assessment of the Mg-Zn system," International Journal of Materials Research, vol. 83, no. 4, pp. 216-223, 1992.
[41] P. Liang et al., "Experimental investigation and thermodynamic calculation of the Al–Mg–Zn system," Thermochimica Acta, vol. 314, no. 1-2, pp. 87-110, 1998.
[42] Y. Yuan, F. Pan, D. Li, and A. Watson, "The re-assessment of the Mg–Zn and Fe–Si systems and their incorporation in thermodynamic descriptions of the Al–Mg–Zn and Fe–Si–Zn systems," Calphad, vol. 44, pp. 54-61, 2014.
[43] Z. Moser, "Thermodynamic properties of dilute solutions of magnesium in zinc," Metallurgical Transactions, vol. 5, no. 6, pp. 1445-1450, 1974.
[44] M. Hämäläinen, H. Braga, N. Bochvar, T. Dobatkina, E. Lyssova, and L. Rokhlin, "Thermodynamic Evaluations of the Al-Li-Cu-Mg-Zr Systems," Definition of thermo chemical and thermo physical properties to provide a database for the development of new light alloys (Volume 1), 1998.
[45] B. Predel and H. Ruge, "Investigation of enthalpies of formation in the Mg-Cu-Zn, Mg-Cu-Al and Mg-Cu-Sn systems as a contribution to the clarification of the bonding relationships in Laves phases," Mater. Sci. Eng, vol. 9, pp. 141-150, 1972.
[46] D. Farkas and C. Birchenall, "New eutectic alloys and their heats of transformation," Metallurgical Transactions A, vol. 16, no. 3, pp. 323-328, 1985.
[47] M. Notin, M. Dirand, D. Bouaziz, and J. Hertz, "Determination of the Partial Molar Enthalpy at Infinite Dilution of Liquid Mg and Solid Cu in Pure Liquid Al and of the Enthalpy of Formation of the S-Phase (Al2CuMg)," Compt. Rend. Acad. Sci., Paris, Ser. II, vol. 302, pp. 63-66, 1986.
[48] G. Urazov and M. Mirgalovskaya, "Ternary Intermetallic Phases in the Al-Cu-Mg System," Izv. Sekt. Fiz.-Khim. Anal, vol. 19, pp. 514-521, 1949.
[49] T. Buhler, S. Fries, P. Spencer, and H. Lukas, "A thermodynamic assessment of the Al-Cu-Mg ternary system," Journal of phase equilibria, vol. 19, no. 4, pp. 317-333, 1998.
[50] G. Eger, "Study of the Constitution of Ternary Magnesium-Aluminum-Zinc Alloys," Z. Metallkd., vol. 4, pp. 29-128, 1913.
[51] F. Laves, K. Lohberg, and H. Witte, "On the Isomorphy of the Ternary Compounds Mg 3 Zn 3 Al 2 and Mg 4 CuAl 6'," Metallwirtschaft, vol. 14, pp. 793-794, 1935.
[52] G. Bergman, J. L. Waugh, and L. Pauling, "Crystal structure of the intermetallic compound Mg 32 (AI, Zn) 49 and related phases," Nature, vol. 169, no. 4312, pp. 1057-1058, 1952.
[53] J. Clark, "Phase relations in the magnesium-rich region of the Mg-Al-Zn phase diagram," Trans. Am. Soc. Met, vol. 53, pp. 295-306, 1961.
[54] H. Liang, "Thermodynamic modeling and experimental investigation of the aluminum-copper-magnesium-zinc quaternary system," The University of Wisconsin-Madison, 1998.
[55] W. Köster, "ber den Aufbau und die Volumenänderungen der Zink-Kupfer-Aluminium-Legierungen, III. Ubersicht über den Gleichgewichts vel’lauf im System Kupfer-Aluminium-Zink (The Constitution and the Volume Changes of Zn-Cu-Al Alloys, III. Summary of the Equilibrium Relationships in the System Cu-Al-Zn)," Z. Metallkd., vol. 33, pp. 289-296, 1941.
[56] W. Köster and K. Moeller, "The constitution and the volume changes of Zn Cu Al-- alloys. I. The partitioning of the concentration plane at 350 C," Zeitschrift fuer Metallkunde, vol. 33, pp. 278-283, 1941.
[57] S. Sugino and H. Hagiwara, "Effects of Aluminum and Nickel on the Activity of Zinc in Molten Copper," J. Jpn. Inst. Met., vol. 50, no. 12, pp. 1068-1074, 1986.
[58] S.-M. Liang and R. Schmid-Fetzer, "Thermodynamic assessment of the Al–Cu–Zn system, Part III: Al–Cu–Zn ternary system," Calphad, vol. 52, pp. 21-37, 2016.
[59] Y. A. Chang, J. Neumann, A. Mikula, and D. Goldberg, "Phase diagrams and thermodynamic properties of ternary Copper-metal systems," NATIONAL STANDARD REFERENCE DATA SYSTEM, 1979.
[60] W. Koster, "* DAS DREISTOFFSYSTEM ALUMINIUM-MAGNESIUM-ZINK. 4. DER GLEICHGEWICHTSVERLAUF AUF DER ALUMINIUM-ZINK-SEITE UNTERHALB 350-DEGREES," ZEITSCHRIFT FUR METALLKUNDE, vol. 39, no. 7, pp. 211-213, 1948.
[61] R. King and O. Kleppa, "A thermochemical study of some selected laves phases," Acta Metallurgica, vol. 12, no. 1, pp. 87-97, 1964.
[62] P. Liang, H. Seifert, H. Lukas, G. Ghosh, G. Effenberg, and F. Aldinger, "Thermodynamic modelling of the Cu-Mg-Zn ternary system," Calphad, vol. 22, no. 4, pp. 527-544, 1998.
[63] D. Strawbridge and A. LITTLE, "THE CONSTITUTION OF ALUMINIUM COPPER MAGNESIUM ZINC ALLOYS AT 460-DEGREES-C," Journal of the Institute of Metals, vol. 74, no. 7, pp. 191-225, 1948.
[64] I. Polmear, "The ageing characteristics of ternary aluminium-zinc-magnesium alloys," J. Inst. Metals, vol. 86, 1957.
[65] J.-F. Nie, I. Polmear, and D. S. S. John, Light alloys: metallurgy of the light metals. Elsevier, 2017.
[66] S. Ringer and K. Hono, "Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies," Materials characterization, vol. 44, no. 1-2, pp. 101-131, 2000.
[67] K. Hono, N. Sano, and T. Sakurai, "Quantitative atom-probe analysis of some aluminum alloys," Surface science, vol. 266, no. 1-3, pp. 350-357, 1992.
[68] J. Lendvai, "Precipitation and strengthening in aluminium alloys," in Materials Science Forum, 1996, vol. 217: Trans Tech Publ, pp. 43-56.
[69] J. Gjønnes and C. J. Simensen, "An electron microscope investigation of the microstructure in an aluminium-zinc-magnesium alloy," Acta Metallurgica, vol. 18, no. 8, pp. 881-890, 1970.
[70] J. K. Park, "Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6," Materials Science and Engineering: A, vol. 103, no. 2, pp. 223-231, 1988.
[71] P. Auger and R. JM, "ETUDE AUX RAYONS X ET PAR MICROSCOPIE ELECTRONIQUE DE LA PRECIPITATION DANS LES ALLIAGES AL-ZN-MG ET AL-ZN-MG-CU REVENUS ENTRE 100 ET 300OC," 1974.
[72] X. Li, V. Hansen, J. Gjønnes, and L. Wallenberg, "HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys," Acta materialia, vol. 47, no. 9, pp. 2651-2659, 1999.
[73] J. Auld, A. JH, and C. SM, "THE STRUCTURE OF THE METASTABLE ETA'PHASE IN ALUMINIUM-ZINC-MAGNESIUM ALLOYS," 1974.
[74] C. Wolverton, "Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys," Acta Materialia, vol. 49, no. 16, pp. 3129-3142, 2001.
[75] L. Mondolfo, N. Gjostein, and D. Levinson, "Structural changes during the aging in an Al-Mg-Zn alloy," JOM, vol. 8, no. 10, pp. 1378-1385, 1956.
[76] S. Brenner, J. Kowalik, and H. Ming-Jian, "FIM/atom probe analysis of a heat treated 7150 aluminum alloy," Surface science, vol. 246, no. 1-3, pp. 210-217, 1991.
[77] J. I. Rojas and D. Crespo, "Dynamic microstructural evolution of an Al–Zn–Mg–Cu alloy (7075) during continuous heating and the influence on the viscoelastic response," Materials Characterization, vol. 134, pp. 319-328, 2017.
[78] A. Deschamps, A. Bigot, F. Livet, P. Auger, Y. Brechet, and D. Blavette, "A comparative study of precipitate composition and volume fraction in an Al–Zn–Mg alloy using tomographic atom probe and small-angle X-ray scattering," Philosophical Magazine A, vol. 81, no. 10, pp. 2391-2414, 2001.
[79] M. Dumont, W. Lefebvre, B. Doisneau-Cottignies, and A. Deschamps, "Characterisation of the composition and volume fraction of η′ and η precipitates in an Al–Zn–Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy," Acta Materialia, vol. 53, no. 10, pp. 2881-2892, 2005.
[80] D. Liu et al., "Quantitative study of nanoscale precipitates in Al–Zn–Mg–Cu alloys with different chemical compositions," Materials Science and Engineering: A, vol. 639, pp. 245-251, 2015.
[81] N. Ryum, "Precipitation kinetics in an Al-Zn-Mg-alloy," International Journal of Materials Research, vol. 66, no. 6, pp. 338-343, 1975.
[82] H. Löffler, I. Kovács, and J. Lendvai, "Decomposition processes in Al-Zn-Mg alloys," Journal of Materials Science, vol. 18, no. 8, pp. 2215-2240, 1983.
[83] E. Donoso, "Calorimetric study of the dissolution of Guinier-Preston zones and η′ phase in Al-4.5 at.% Zn-1.75 at.% Mg," Materials Science and Engineering, vol. 74, no. 1, pp. 39-46, 1985.
[84] H. Wang, P. A. Colegrove, and J. Mehnen, "Hybrid modelling of the contact gap conductance heat transfer in welding process," Advances in Engineering Software, vol. 68, pp. 19-24, 2014.
[85] N. Nayan, S. N. Murty, M. Mittal, and P. Sinha, "Optimization of homogenizing mode for aluminum alloy AA7075 using calorimetric and microstructural studies," Metal Science and Heat Treatment, vol. 51, no. 7, pp. 330-337, 2009.