簡易檢索 / 詳目顯示

研究生: 姚郁紋
Yao, Yu-Wen
論文名稱: 我國下階段釋出第五代行動通訊頻譜整備方案之研究
The next phase spectrum planning of 5G service in Taiwan
指導教授: 陳文字
Chen, Wen-Tzu
學位類別: 碩士
Master
系所名稱: 管理學院 - 電信管理研究所
Institute of Telecommunications Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 102
中文關鍵詞: 第五代行動通訊頻譜整備方案財務分析頻譜拍賣利害關係人
外文關鍵詞: Fifth Generation Mobile Communication, spectrum preparation plan, financial analysis, stakeholders, spectrum auction
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣於2020年完成第一波5G釋照中,中頻段僅釋放3300-3570MHz,總計270MHz,未來隨著需求上升,勢必需要釋出第二波頻譜。由於我國C頻段3.57-4.2 GHz上,尚存在衛星通信以及點對點微波固定通信業者,經過盤點受到影響的利害關係人有衛星廣播電視事業、有線廣播電視系統經營者、無線電視事業、衛星固定通信業務經營者及其使用者、接收 FSS 之星級旅館業者、電信事業、固定通信及點對點微波業者、政府機關等八類。
    本研究參考其他開放中頻段供5G使用國家的頻段及作法,將目前受到影響的利害關係人分成四類:政府、電信業者、點對點微波業者以及FSS現有使用者,並歸納成以下5種可能之候選方案。方案一保留現有ST-2 轉頻器,並預留40 MHz保護帶,其餘頻譜3740-4200MHz僅供行動通信使用。方案二與方案一相同,不同的是,其餘頻譜3740-4200MHz以共享方式,讓 5G、FSS 與固定通信及點對點微波共同使用。方案三讓5G、衛星、固定通信及點對點微波等共享整個 3.57-4.2GHz 頻段。方案四從3740-4200MHz 規劃合適頻寬及頻段供5G專用,其餘則保留給FSS與固定通信及點對點微波使用,方案五將整個3.57-4.2GHz頻段規劃為僅供行動通信使用。
    為了找出哪一種方案整體效益最高,本研究利用財務分析中的淨現值法,來驗證在不同的方案中所得到的利益以及受到的損害,綜合比較整體的效益。經過實證分析後發現,方案五是所有方案中獲益最高的。政府在方案五不僅能獲得最多的頻譜標金,來發展國家建設,電信業者也不需要與其他利害關係人一起共用頻譜,因此就效率面來說,5G 頻譜在方案五能達到最快成熟且淋漓盡致的運用,不僅擁有最大的頻寬也不須與他人共用,能透過龐大的頻譜,將 5G 技術發展至巔峰之最,徹底的發揮 5G的特性。

    關鍵字:第五代行動通訊,頻譜整備方案,財務分析、頻譜拍賣、 利害關係人

    SUMMARY
    In the first wave of 5G spectrum release completed by Taiwan in 2020, only 3300-3570MHz is released in the mid-band. If the second wave of spectrum is to be released in the future, Taiwan’s telecom regulator can follow other countries and consider frequency bands such as n77 and n78.
    There are still satellite communication and point-to-point microwave fixed communication operators in Taiwan's C-band 3.57-4.2 GHz. Therefore, this study refers to the frequency bands and practices that have been opened in other countries, as well as the relevant stakeholders of Taiwan's current use of the frequency spectrum. Then we propose 5 possible scenarios or solutions for Taiwan’s next phase release of 5G.
    First scenario is to keep the existing ST-2 transponders and reserve a 40 MHz guard band, and the remaining 3740-4200 MHz spectrum is only used for mobile communications. Second scenario unlike scenario one in that the rest of the spectrum 3740-4200MHz is shared, allowing 5G, FSS and point-to-point microwave to be used together. The third is to let 5G, satellite, fixed communication and point-to-point microwave share the entire 3.57-4.2GHz frequency band. The fourth, 3740-4200MHz is planned to have suitable bandwidth and frequency band for 5G exclusive use, and the rest are reserved for FSS, fixed communication and point-to-point microwave. Finally, the entire 3.57-4.2GHz band is planned for mobile communications only.
    This study uses the net present value method in financial analysis to compare the performance of the proposed solutions. After empirical analysis, we found that solution 5 is the most profitable in all schemes. In solution 5, the government can not only obtain the most spectrum bids to develop the country, but also telecom operators do not need to share the spectrum with other stakeholders.

    Keywords: Fifth Generation Mobile Communication, spectrum preparation plan, financial analysis, stakeholders, spectrum auction

    摘要i 目錄vii 表目錄x 圖目錄xiii 第一章 緒論1 1.1 研究背景1 1.2 研究動機4 1.3 研究目的8 1.4 研究流程9 第二章 文獻回顧10 2.1 ITU WRC 10 2.1.1 ITU WRC概述10 2.1.2 WRC-19、WRC-23衛星相關頻譜規劃10 2.2 C-band之於5G發展的重要性及影響11 2.3 國際頻譜整備作法及補償機制12 2.4主要國家5G頻譜整備策略及補償規劃13 2.4.1 5G頻段發展13 2.4.2英國14 2.4.3歐盟18 2.4.4日本20 2.4.5美國22 2.5 我國未來5G頻譜整備策略及補償配套措施29 2.6 中新二號衛星使用之頻譜與服務31 2.7文獻探討34 2.7.1中頻段於5G的重要性34 2.7.2行動通訊與衛星通訊間干擾相關之文獻35 2.7.3基地台建置及成本結構相關之文獻36 2.8小結37 第三章 研究方法39 3.1研究框架及步驟39 3.2文獻資料分析法39 3.3利害關係人40 3.4確認決策焦點42 3.5認定關鍵決策因素 42 第四章 執行、資料蒐集與財務驗證46 4.1頻譜整備方案假設46 4.2利害關係人在3.5GHz中的既有業務49 4.2.1 ST-2及其使用者49 4.2.2 FSS使用者51 4.2.3點對點微波通訊業者56 4.3財務計算變數假設57 4.3.1 共同環境變數57 4.3.2 營收變數58 4.3.3 成本變數60 4.4資料蒐集及方案實證分析結果62 4.4.1頻譜整備方案一62 4.4.2頻譜整備方案二68 4.4.3頻譜整備方案三74 4.4.4頻譜整備方案四80 4.4.5頻譜整備方案五85 4.5小結92 第五章 結論以及建議95 5.1研究結論95 5.2研究建議97 參考文獻98 附錄101

    Baker, A., Brogan, P., Carare, O., Copeland, N., DeGraba, P., Kauffman, S., . . . Sullivan, S. (2020). Economics at the FCC 2019–2020: Spectrum Policy, Universal Service, Inmate Calling Services, and Telehealth. Review of Industrial Organization, 57(4), 827-858.
    Bruder, J., Carlo, J., Gurney, J., & Gorman, J. (2003). IEEE standard for letter designations for radar-frequency bands. IEEE Aerospace & Electronic Systems Society, 1-3.
    Danso, A., Adomako, S., Lartey, T., Amankwah-Amoah, J., & Owusu-Yirenkyi, D. (2020). Stakeholder integration, environmental sustainability orientation and financial performance. Journal of business research, 119, 652-662.
    Erunkulu, O. O., Zungeru, A. M., Lebekwe, C. K., Mosalaosi, M., & Chuma, J. M. (2021). 5G mobile communication applications: a survey and comparison of use cases. IEEE Access, 9, 97251-97295.
    FCC. (2020a). Auction 105: 3.5 GHz Band. Retrieved from https://www.fcc.gov/auction/105/factsheet
    FCC. (2020b). Expanding Flexible Use of the 3.7 to 4.2 GHz Band. Retrieved from https://docs.fcc.gov/public/attachments/FCC-20-22A1.pdf
    FCC. (2020c). Federal Communications Commission. Retrieved from https://docs.fcc.gov/public/attachments/FCC-20-110A1.pdf
    FCC. (2021a). Auction 107: 3.7 GHz Service. Retrieved from https://www.fcc.gov/auction/107/factsheet
    FCC. (2021b). AUCTION OF FLEXIBLE-USE SERVICE LICENSES IN THE 3.45–3.55 GHz BAND FOR NEXT-GENERATION WIRELESS SERVICES COMMENT SOUGHT ON COMPETITIVE BIDDING PROCEDURES FOR AUCTION 110. Retrieved from https://docs.fcc.gov/public/attachments/FCC-21-33A1.pdf
    FCC. (2021c). FCC OPENS 100 MEGAHERTZ OF MID-BAND SPECTRUM FOR 5G. Retrieved from https://docs.fcc.gov/public/attachments/DOC-370860A1.pdf
    Frédéric PUJOL, C. M., Basile CARLE and Santiago REMIS. (2021). 5G Observatory Quarterly Report 12. Retrieved from https://5gobservatory.eu/wp-content/uploads/2021/07/90013-5G-Observatory-Quarterly-report-12_v1.0.pdf
    Frieden, R. (2020). The evolving 5G case study in United States unilateral spectrum planning and policy. Telecommunications Policy, 44(9), 102011.
    Group, t. M. o. A. W. (2021). APT REPORT ON MITIGATION MEASURES TO IMPROVE SHARING AND COMPATIBILITY BETWEEN 4G-LTE AND 5G-NR SYSTEMS AND OTHER SYSTEMS OPERATING IN PORTIONS OF 3300 – 4200 MHZ,.
    GSMA. (2021). WRC-23-IMT-Agenda-Items. Retrieved from https://www.gsma.com/spectrum/wp-content/uploads/2021/04/WRC-23-IMT-Agenda-Items.pdf
    Hattab, G., Moorut, P., Visotsky, E., Cudak, M., & Ghosh, A. (2018). Interference analysis of the coexistence of 5G cellular networks with satellite earth stations in 3.7-4.2 GHz. Paper presented at the 2018 IEEE International Conference on Communications Workshops (ICC Workshops).
    Hu, F., Chen, B., & Zhu, K. (2018). Full spectrum sharing in cognitive radio networks toward 5G: A survey. IEEE Access, 6, 15754-15776.
    Institute, L. I. (2020a). 47 CFR § 1.946 - Construction and coverage requirements. Retrieved from https://www.law.cornell.edu/cfr/text/47/1.946#d
    Institute, L. I. (2020b). 47 CFR § 96.25 - Priority access licenses. Retrieved from https://www.law.cornell.edu/cfr/text/47/96.25
    ITU-R, I. (2020). R15-WRC19PREPWORK contribution 12: WRC-19 agenda item 1.13–IMT-2020 between 24.25 and 86 GHz. In.
    Johansson, K., Furuskar, A., Karlsson, P., & Zander, J. (2004). Relation between base station characteristics and cost structure in cellular systems. Paper presented at the 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No. 04TH8754).
    Kułacz, Ł., Kryszkiewicz, P., Kliks, A., Bogucka, H., Ojaniemi, J., Paavola, J., . . . Kokkinen, H. (2019). Coordinated Spectrum Allocation and Coexistence Management in CBRS-SAS Wireless Networks. IEEE Access, 7, 139294-139316.
    Lagunas, E., Tsinos, C. G., Sharma, S. K., & Chatzinotas, S. (2020). 5G cellular and fixed satellite service spectrum coexistence in C-band. IEEE Access, 8, 72078-72094.
    Levary, R. R., & Han, D. (1995). Choosing a technological forecasting method. Institute of Industrial management, 37(31), 14–18.
    Massaro, M., & Beltrán, F. (2020). Will 5G lead to more spectrum sharing? Discussing recent developments of the LSA and the CBRS spectrum sharing frameworks. Telecommunications Policy, 44(7), 101973.
    Matinmikko-Blue, M., Yrjölä, S., Seppänen, V., Ahokangas, P., Hämmäinen, H., & Latva-Aho, M. (2019). Analysis of spectrum valuation elements for local 5G networks: Case study of 3.5-GHz band. IEEE Transactions on Cognitive Communications and Networking, 5(3), 741-753.
    Mitchell, R. K., Van Buren III, H. J., Greenwood, M., & Freeman, R. E. (2015). Stakeholder inclusion and accounting for stakeholders. In: Wiley Online Library.
    Mun, K. (2018). OnGo: New shared spectrum enables flexible indoor and outdoor mobile solutions and new business models. White Paper, Mobile Experts, Inc., 1-9.
    Ofcom. (2019). Enabling Wireless Innovation through Local Licensing. Retrieved from https://www.ofcom.org.uk/__data/assets/pdf_file/0033/157884/enabling-wireless-innovation-through-local-licensing.pdf
    Ofcom. (2020a). Award of the 700 Mhz and 3.6-3.8 Ghz spectrum bands. Retrieved from https://www.ofcom.org.uk/__data/assets/pdf_file/0033/157884/enabling-wireless-innovation-through-local-licensing.pdf
    Ofcom. (2020b). Supporting the UK’s wireless future. Retrieved from https://www.ofcom.org.uk/__data/assets/pdf_file/0027/208773/spectrum-strategy-consultation.pdf
    Ofcom. (2021). Award of 700 MHz and 3.6–3.8 GHz Spectrum by Auction.
    Ofcom. (2017). 5G Spectrum Access at 26 GHz and Update on Bands Above 30 GHz.
    Oughton, E. J., Frias, Z., van der Gaast, S., & van der Berg, R. (2019). Assessing the capacity, coverage and cost of 5G infrastructure strategies: Analysis of the Netherlands. Telematics and Informatics, 37, 50-69.
    Parker, J. R., Flood, I. D., & Carter, G. D. (2021). Adjacent channel compatibility between IMT and ubiquitous FSS Earth Stations in the 3.4–3.8 GHz frequency band. Wireless Networks, 27(2), 1103-1110.
    Peisa, J., Persson, P., Parkvall, S., Dahlman, E., Grovlen, A., Hoymann, C., & Gerstenberger, D. (2020). 5G evolution: 3GPP releases 16 & 17 overview. . Ericsson Technology Review, 6, 2-13.
    Rana, M. S., Prasad, R., Yoon, H., & Hwang, J. (2020). Opportunity cost of spectrum for mobile communications: Evaluation of spectrum prices in Bangladesh. Telecommunications Policy, 44(3), 101925.
    內政部警政署. (2021). 警消微波網路系統移頻計畫.
    余序江, 許志義, & 陳澤義. (1998). 科技管理導論: 科技預測與規劃: 五南.
    直彦, 総. 総. 電. 移. 荻. (2019). 第5世代移動通信システム(5G)の今と将来展望. Retrieved from https://www.soumu.go.jp/main_content/000633132.pdf
    財團法人電信技術中心. (2020). 3.5 GHz 中頻段改善措施建置與潛在干擾評估及處理作業計畫. Retrieved from https://www.grb.gov.tw/search/planDetail?id=13015729
    國家通訊傳播委員會. (2020a). 因應政策調整或停用無線電頻率所涉補償費用之鑑價評估委託研究採購案. Retrieved from https://www.ncc.gov.tw/chinese/files/20091/5138_45046_200914_1.pdf
    國家通訊傳播委員會. (2020b). 行動通信頻率使用費計算基. Retrieved from https://law.moj.gov.tw/LawClass/LawGetFile.ashx?FileId=0000276218&lan=C
    國家通訊傳播委員會. (2021). 行動寬頻專用電信網路(4.8-4.9GHz)政策諮詢文件. Retrieved from https://www.ncc.gov.tw/chinese/files/21041/54_45934_210413_1.pdf
    楊青燕. (2011). 海外直播衛星電視初探-以華人衛星電視為例. Retrieved from https://hdl.handle.net/11296/azm9qq
    葉至誠, 社會學, & 葉立誠. (2002). 研究方法與論文寫作: 商鼎文化.

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE