| 研究生: |
阮婷婷 Juan, Ting-Ting |
|---|---|
| 論文名稱: |
二維翼型人工心瓣之最佳化設計 Optimal Design of Two-dimensional Aero-Shaped Artificial Valve |
| 指導教授: |
陸鵬舉
Lu, Pong-Jeu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 人工心瓣 、最佳化設計 |
| 外文關鍵詞: | optimal design, artificial valve |
| 相關次數: | 點閱:85 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人工機械瓣自1950年發展至今,超過80種以上的設計曾經用於臨床試驗,但依然無法避免血栓現象(Thrombus)及溶血現象(Hemolysis)的發生。本研究採用翼型理論(Theory of Wing Sections)與飛行穩定力學(Flight Stability)的概念作為翼型人工瓣的設計基礎,以降低葉瓣對血球的傷害與減少葉瓣撞擊金屬支架的動量為設計目標。本研究結合計算流體力學(Computational Fluid Dynamics)、類神經網路(Artificial Neural Network)與基因演算法(Genetic Algorithms)進行二維葉瓣最佳化的設計,以獲得開啟至最大角度時的最佳葉瓣外型ASV-1與適當的旋轉中心位置。與傳統式平板葉瓣相比較,ASV-1的血動力(Hemodynamics)流場品質較佳,血液通過葉瓣時的壓力損耗低,駐流區小,較不易造成血栓現象,產生的雷諾應力(Reynolds Stress)亦較小,因此對血液傷害較低;同時,其開啟至最大角度時的力矩接近靜平衡,致使葉瓣撞擊金屬支架的動量最小,因此可避免支架疲勞斷裂及葉瓣振動(Fluttering),非但優化了結構強度設計,亦避免了振動所產生的非定常尾流(Wake)對血液的傷害。
Since 1950, more than 80 prosthetic heart valves have been developed and used clinically, but none of them can be considered prefect hemodynamically. Thrombus and hemolysis still exist. Patients with prosthetic valves often have to receive long-term anticoagulant therapy. A new design concept is proposed here which fully utilizes the aeronautic wing design guidelines. The design objective lies in lowering the valve induced damage to the blood cells and minimizing the impact momentum between the occluder and the strut of the valve. Based on the theory of wing sections and the analogy of flight stability, an optimal procedure which integrates Computational Fluid Dynamics (CFD), Artificial Neural Network (ANN) and Genetic Algorithms (GA) is developed to search for an optimal occluder shape and a minimal-moment rotation center. Comparing the optimal ASV-1 design to the baseline plate occluder, ASV-1 has better hemodynamic characteristics of lower pressure loss and Reynolds stresses. Furthermore, ASV-1 has nearly zero-moment when it reaches the maximum opening angle where the resultant impact force is low. The concern of strut failure can thus be greatly relieved. The present work successfully integrates ANN and GA to result in an engineering optimization procedure that can be used to show the importance of the shape of the occluder and the position of the rotating center in the mono-leaflet heart valve design.
1. 圖解家庭醫學大百科,啓思文化出版.
2. 朱樹勳,”心臟病與開刀手術,” 健康世界雜誌發行, 1997.
3. Baldwin, J. T., Deutsch, S., Geselowitz, D. B., and Tarbell, J. M., “ Estimation of Reynolds Stress within the Penn State Left Ventricular Assist Device,” ASAIO, Vol. 36, No. 3, 1990, pp. M274-M278.
4. Chew, Y. T., Low, H. T., Lee, C. N., and Kwa, S. S., “ Laser Anemometry Measurements of Steady Flow Past Aortic Valve Prostheses,” Journal of Biomechanical Engineering, Vol. 115, No. 3, 1993, pp. 290-298.
5. Fry, D. L., “ Acute Vascular Endothelial Changes Associated with Increased Blood Velocity Gradients,” Circulation Research, Vol. 22, 1968, pp. 165-197.
6. Fry, D. L., “ Certain Histological and Chemical Responses of the Vascular Interface to Acutely Induced Mechanical Stresses in the Aorta of the Dog,” Circulation Research, Vol. 24, 1969, pp. 93-108.
7. Heinrich, R. S., Fontaine, A. A., Grimes, R. Y., Sidhaye, A., Yang, S., Moore, K. E., Levine, R. A., and Yoganathan, A. P., “ Experimental Analysis of Fluid Mechanical Energy Losses in Aortic Valve Stenosis: Importance of Pressure Recovery,” Annals of Biomedical Engineering, Vol. 24, 1996, pp. 685-694.
8. Hellums, J. D. and Brown, C. H., “ Blood Cell Damage by Mechanical Forces,” Cardiovascular Flow Dynamics and Measurements, Hwang, N. H. C., and Norman, N. A., eds., Univ. Park Press, Baltimore, MD, 1977, pp. 799-823.
9. Hirsch, C., “ A Flexible and Automatic Design Environment Applied to the Optimization of Turbomachinery Blades,” Proceeding of ISOABE the Fifteenth International Symposium on Air-Breathing Engine, 2001.
10. Holland, J. H., “ Information Processing in Adaptive Systems,” Information Processing in the Nervous System: Proceedings of the International Union of Physiological Sciences, Vol. 3, 1962, pp. 330-339.
11. Holland, J. H., “ Outline for a Logical Theory of Adaptive Systems,” Journal of the Association for Computer Machinery, Vol. 3, 1962, pp. 297-314.
12. Holland, J. H., Adaptation in Natural and Artificial System, Ann Arbor, MI: the University of Michigan Press., 1975.
13. Hung, T. C., Hochmuth, R. M., Joist, J. H., and Sutera, S. P., “Shear-Induced Aggregation and Lysis of Platelets,” ASAIO, Vol. 22, 1976, pp. 285-290.
14. Liu, J. S., Lu, P. C., and Chu, S. H., ” Turbulence Characteristics Downstream of Bileaflet Aortic Valve Prostheses,” Journal of Biomechanical Engineering, Vol. 122, 2000, pp. 118-124.
15. McClelland, J. and Rumelhart, D., “Learning Internal Representations by Error Propagation,” Parallel Distributed Proceeding, Vol. 1 and 2, MIT Press, Cambridge, MA, 1986.
16. Michalewicz, Z., “Genetic Algorithms + Data Structures = Evolution Programs” Spring-Verlag Berlin Heidelberg New York.
17. Patankar, S. V. and Spalding, D. B., ” A Calculation Procedure for Heart, Mass, and Momentum Transfer in Three-dimensional Parabolic Flows,” International Journal of Heat and Mass Transfer, Vol. 15, 1972, pp. 1787-1806.
18. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 1980.
19. Peskin, C. S. and McQueen, D. M., “Modeling Prosthetic Heart Valves for Numerical Analysis of Blood Flow in the Heart,” Journal of Computational Physics, Vol. 37, 1980, pp. 113-132.
20. Peskin, C. S., “The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and Computational Methods,” Annual Review of Fluid Mechanics, Vol. 14, 1982, pp. 235-259.
21. Rai, M. M. and Madavan, N. K., “ Application of Artificial Neural Networks to the Design of Turbomachinery Airfoil,” Journal of Propulsion and Power, Vol. 17, No. 1, 2001, pp. 176-183.
22. Sallam, A. M. and Hwang, N. H. C., “ Human Red Blood Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses,” Biorheology, Vol. 21, 1984, pp. 783-797.
23. Smith, R., Blick, E., Coalson, J., and Stein, P., “Thrombus Production by Turbulence,” Journal of Applied Physiology, Vol. 32, 1972, pp. 261-264.
24. Stein, P. D., and Sabbah, M. N, “ Measured Turbulence and Its Effect on Thrombus Formation,” Circulation Research, Vol. 35, 1974, pp. 608-614.
25. Sutera, S. P. and Mehrjardi, M. H., “ Deformation and Fragmentaion of Human Red Blood Cells in Turbulent Shear Flow,” Biophysical Journal, Vol. 15, 1975, pp. 1-11.
26. Tannehill, J. C., Anderson D. A., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, 2nd Edition, Taylor & Francis Group, 191997, pp. 674-676
27. Van Doormaal, J. P. and Raithby, G. D., “ Enhancements of the Simple Method for Predicting Incompressible Fluid Flows,” Numerical Heat Transfer, Vol. 7, 1984, pp. 147-163.
28. Vongpatanasin, W., Hills, L. D., and Lange, R. A., “Prosthetic Heart Valve,” The New England Journal of Medicine, Vol. 335, No. 6, 1996, pp. 407-416.
29. Wieting, D. W., Eberhard, A. C., Reul, H., Breznock, E. M., Stefan, G. S., and Chandler, J. G., “ Strut Fracture Mechanisms of the Bjork-Shiley Convexo-Concave Heart Valve,” Journal of Heart Valve Disease, Vol. 8, No. 2, 1999, pp. 206-217.
30. Williams, A. R., ” Release of Serotonin from Human Platelets by Acoustic Microstreaming.” Journal of the Acoustical Society of America, Vol. 56, No. 5, 1974, pp. 1640-1643.
31. Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C. G., “ Development of Turbulence Models for Shear Flow by a Double Expansion Technique,” Physics of Fluid, Part A, Vol. 4, No. 7,1992 pp. 1510-1520.
32. Yoganathan, A. P., Corcoran, W. H., Harrison, E. C., and Carl, J. R., “The Bjork-Shiley Aortic Prosthesis: Flow Characteristics, Thrombus Formation and Tissue Overgrowth,” Circulation, Vol. 58, No. 1, 1978, pp. 70-76.
33. Yoganathan, A. P., Corcoran, W. H., and Harrison, E. C., “In Vitro Velocity Measurements in the Vicinity of Aortic Prostheses,” Journal of Biomechanics, Vol. 12, 1979, pp. 135-152.
34. Yoganathan, A. P., Corcoran, W. H., and Harrison, E. C., “ Pressure Drops across Prosthetic Aortic Heart Valves under Steady and Pulsatile Flow-in Vitro Measurements,” Journal of Biomechanics, Vol. 12, 1979, pp. 153-164.
35. Yoganathan, A. P., Corcoran, W. H., Harrison, E. C., and Carl, J. R., “ In Vitro Velocity Measurements in the Near Vicinity of the Bjork-Shiley Aortic Prosthesis Using a Laser Doppler Anemometer,” Medical, & Biological Engineering & Computing, Vol. 17,1979, pp. 453-459.
36. Yoganathan, A. P., Reamer, H. H., Cororan, W. H., and Harrison, E. C., “ The Bjork-Shiley Aortic Prosthesis: Flow Characteristic of the Present Model vs. the Convexo-Concave Model,” Scandinavian Journal of Thoracic and Cardiovascular Surgery, Vol. 14, 1980, pp. 1-5.
37. Guide for CFX-4.4 Solver, AEA Technology Press.