| 研究生: |
廖敏宏 Liao, Min-Hung |
|---|---|
| 論文名稱: |
磁性奈米載體在生物觸媒和生化分離之應用 Applications of Nano-sized Magnetic Carriers in Biocatalysis and Bioseparation |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 230 |
| 中文關鍵詞: | 生化分離 、奈米吸附劑 、吸附 、穩定性 、動態光散射儀 、混合逆微胞 、逆微胞 、醇脫氫酵素 、固定化 、酵素 、奈米粒子 、生物觸媒 、磁性載體 |
| 外文關鍵詞: | bioseparation, stability, adsorption, mixed reverse micelles, nano-adsorbent, DLS, reverse micelles, alcohol dehydrogenase, nanoparticles, immobilization, biocatalysis, enzyme, magnetic carriers |
| 相關次數: | 點閱:158 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關於磁性奈米載體在生物觸媒與生化分離上之應用研究。前者主要將酵母菌類醇脫氫酵素(YADH)固定化在四氧化三鐵(Fe3O4)磁性奈米載體上,探討製備變因、產品特性、及其在水相系統和逆微胞系統中之操作性能;此外,也探討YADH在混合逆微胞系統中的穩定性與活性。後者主要將聚丙烯酸(PAA)共價鍵結在Fe3O4磁性奈米載體上,作為一種新型磁性奈米吸附劑,探討製備變因、產品特性、及其在水相溶菌酶吸附分離上的應用。
關於YADH在混合逆微胞系統中之穩定性與活性研究,係將非離子型界面活性劑(Brij30)加入含陰離子型界面活性劑(AOT)的逆微胞系統中,探討其對YADH穩定性與活性的影響。以動態光散射儀(DLS)量測得知,混合逆微胞的水力直徑分佈和平均水力直徑會隨著水與界面活性劑的莫耳比(Wo值)及Brij30濃度的不同而不同,並且影響YADH的活性和穩定性。當混合逆微胞的電荷密度、結合水份、大小、及因AOT和Brij30間之親水性引力所捕捉的水份等變因減低時,YADH的穩定性隨之增加。至於YADH在混合逆微胞中的活性,也同時受到酵素和界面活性劑間的靜電引力和疏水性引力、逆微胞大小及水份結合程度所影響。除了逆微胞有一最適當之水力直徑外,其它因素的降低,將有助於YADH活性的提升。
關於YADH固定化在Fe3O4磁性奈米載體上之研究,首先以化學共沉法製備出Fe3O4磁性奈米粒子,然後將YADH利用carbodiimide活化的方式直接固定化在磁性奈米粒子上,並再探討其操作在水相和逆微胞系統中的操作性能。由穿透式電子顯微鏡(TEM)、X射線繞射儀(XRD)和超導量干涉磁量儀(SQUID磁量儀)分析得知,磁性奈米粒子在YADH固定化後,其大小、結構和超順磁性並無明顯改變。傅立葉轉換紅外線光譜儀(FTIR)分析可確認YADH確實已固定化在磁性奈米粒子上,並推測其一可能的反應機構。固定化YADH在水相系統中擁有62 %的殘餘活性及良好的穩定性,相關的動力行為在本研究中皆有探討。將固定化YADH操作在water/AOT/isooctane的逆微胞系統中,發現NADH和水會分佈在磁性粒子表面上和逆微胞的水池中。隨著Wo值的增加,磁性粒子表面上的水膜厚度亦隨之增加。在固定的NADH莫耳數下,NADH在逆微胞水池中的濃度不受Wo值影響。除了水量外,在相似條件下,固定化YADH在逆微胞系統中的殘餘活性為其在水相系統中的40 %,且固定化YADH在逆微胞系統中的穩定性極佳。另外,固定化YADH在逆微胞系統中的動力行為在本研究中也有探討。
關於磁性奈米吸附劑之製備與應用,首先以化學共沉法製備出Fe3O4磁性奈米粒子,然後將PAA藉carbodiimide活化直接共價鍵結在磁性奈米粒子上,形成具有離子交換功能之磁性奈米載體,並再探討其在水相溶菌酶吸附分離上的應用。由TEM、XRD和SQUID磁量儀分析得知,磁性奈米粒子在共價鍵結PAA後,其大小、結構和超順磁性並無明顯改變。由FTIR、熱重分析儀(TGA)、熱差分析儀(DTA)和化學分析電子光譜儀(XPS)分析可確認PAA已共價鍵結在磁性奈米粒子上。本研究所得的磁性奈米吸附劑,其離子交換容量為1.64 meq/g,遠較一般商業化的吸附劑為高。由於磁性奈米吸附劑具有高的比面積且無孔內擴散阻力,故磁性奈米吸附劑能在1分鐘內就將溶菌酶完全吸附或脫附,且經吸附脫附程序後,其殘餘活性仍達95 %。至於水相溶菌酶在磁性奈米吸附劑上的吸附,可以Langmuir恆溫吸附模式描述。
This dissertation concerns the applications of nano-sized magnetic carries in biocatalysis and bioseparation. In the former, yeast alcohol dehydrogenase (YADH) was immobilized on Fe3O4 magnetic nanoparticles. The preparation conditions, product properties, and the performances in both the water and microemulsion systems were investigated. In addition, the stability and activity of YADH in the mixed reverse micelles was also studied. In the latter, polyacrylic acid (PAA) was covalently bound onto Fe3O4 magnetic nanoparticles to be a novel nano-adsorbent. The preparation conditions, product properties, and the application in the adsorption of lysozyme in aqueous solution were investigated.
The stability and activity of YADH in the mixed reverse micelles were studied by adding Brij30 to the AOT reverse micelles. By the investigation on the hydrodynamic diameter of mixed reverse micelles and its distribution via dynamic light scattering, it was suggested that the structure of mixed reverse micelles and the stability of YADH were determined by four important factors, including the surface charge density, bound water, reverse micellar size, and the entrapment of water by hydrophilic-hydrophilic interaction of AOT and Brij30. The effects of these four factors on the stability of YADH at various Wo values and Brij30 concentration have been discussed. When they were decreased, the stability of YADH might be improved. In addition, it was found that the activity of YADH in AOT/Brij30 mixed reverse micelles might be enhanced at appropriate Brij30 concentrations and ω0 values. According to the hydrodynamic diameter of mixed reverse micelles and its distribution, three main factors were suggested. They were the hydrophobic and electrostatic interactions between enzyme and surfactants, the reverse micellar size, and the bound degree of water molecules. An optimal reverse micellar size and the decreases of other two factors would lead to the enhancement of enzyme activity.
YADH was covalently bound onto Fe3O4 magnetic nanoparticles via carbodiimide activation. The magnetic nanoparticles with a mean diameter of 10.6 nm were prepared by co-precipitating Fe2+ and Fe3+ ions in an ammonia solution and treating under hydrothermal conditions. From the analyses of Transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetism, the magnetic nanoparticles showed no changes in size, structure and superparamagnetic characteristics after binding YADH. The analysis of Fourier transform infrared (FTIR) spectroscopy confirmed the binding of YADH to magnetic nanoparticles and suggested a possible binding mechanism. The bound YADH retained 62% of its original activity and exhibited improved stability. The kinetic behavior of bound YADH was also determined in aqueous solution. In addition, the performance of YADH-bound magnetic nanoparticles in the NADH-containing water-in-oil microemulsions of water/AOT/isooctane was examined. Both water and NADH were present in the aqueous phase of microemulsion solution and on particle surface. The thickness of aqueous film on particle surface increased with increasing the Wo value. At a constant NADH amount, the concentration of NADH in the aqueous phase of microemulsion solution was not significantly affected by the Wo value. The specific activity of bound YADH in the microemulsion system was 40% of that in aqueous solution. The bound YADH showed excellent storage stability and good thermal stability in the microemulsion system. The kinetic behavior of bound YADH in the microemulsion system was also determined.
PAA was covalently bound onto Fe3O4 magnetic nanoparticles via carbodiimide activation. The magnetic nanoparticles with a mean diameter of 13.2 nm were prepared by co-precipitating Fe2+ and Fe3+ ions in an ammonia solution and treating under hydrothermal conditions. From the analyses of TEM, XRD and magnetism, the magnetic nanoparticles showed no change in size, structure and superparamagnetic characteristics after binding PAA. The analyses of FTIR, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and X-ray photoelectron spectroscopy (XPS) confirmed the binding of PAA to magnetic nanoparticles and suggested the binding mechanism of PAA. The ionic exchange capacity of the resultant magnetic nano-adsorbents was estimated to be 1.64 meq/g, much higher than those of the commercial ionic exchange resins. When the magnetic nano-adsorbents were used for the recovery of lysozyme, it was found that the adsorption/desotption of lysozyme was achievable within 1 min due to the absence of pore-diffusion resistance and the specific activity of recovered lysozyme retained 95% of its original activity. In addition, the adsorption behavior followed the Langmuir adsorption isotherm.
1. Abudiab, T.; Jr, R. R. B. (1998) Preparation of magnetic immobilized metal affinity separation media and its use in the isolation of proteins. J. Chromatogr. A 795: 211-217.
2. Adachi, M.; Shibata, K.; Shioi, A.; Harada, M. (1998) Selective separation of trypsin from pancreatin using bioaffinity in reverse micellar system composed of a nonionic surfactant. Biotechnol. Bioeng. 58: 649-653.
3. Akgöl, S.; Kaçar, Y.; Denizli, A.; Arica, M. Y. (2001) Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres. Food Chem. 74: 281-288.
4. Almeida, F. C. L.; Valente, A. P.; Chaimovich, H. (1998) Stability and activity modulation of chymotrypsins in AOT reversed micelles by protein-interface interaction. Biotechnol. Bioeng. 59: 360-363.
5. Arica, M. Y.; Yavuz, H.; Patir, S.; Denizli, A. (2000) Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor. J. Mol. Catal. B 11: 127-138.
6. Asenjo, J. A. (1990) Separation Processes in Biotechnology. New York: Marcel Dekker.
7. Audebert, P.; Sadki, S.; Miomandre, F.; Lanneau, G.; Frantz, R.; Durand, J. O. (2002) Electrochemical study of ferrocene functionalized colloids: an insight into the surface fractal dimension of TiO2 and SnO2 colloids. J. Mater. Chem. 12: 1099-1102.
8. Bahar, T.; Celebi, S. S. (1999) Immobilization of gluocoamylase on magnetic poly(styrene) particles. J. Appl. Polym. Sci. 72: 69-73.
9. Bajpai, A. K. (2000) Adsorption of bovine serum albumin onto glass powder surfaces coated with polyvinyl alcohol. J. Appl. Polym. Sci. 78: 933-940.
10. Batlle, X.; Obradors, X.; Medarde, M.; Carvajal, J. R.; Pernet, M.; Regi, M. V. (1993) Surface spin canting in BaFe12O9 fine particles. J. Magn. Magn. Mater. 124: 228-238.
11. Bílková, Z.; Slováková, M.; Horák, D.; Lenfeld, J.; Churáček, J. (2002) Enzymes immobilized on magnetic carriers:efficient and selective system for protein modification. J. Chromatogr. B 770: 177-181.
12. Bille, V.; Remacle, J. (1986) Simple-kinetic description of alcohol dehydrogenase after immobilization on tresyl-chloride-activated agarose. Eur. J. Biochem. 160: 343-348.
13. Bolto, B. A. (1982) Novel water treatment processes which involve polymers. In: Cooper A R, ed. Polymeric Separation Media. New York: Plenum Press, pp. 211-225.
14. Bowen, W. R.; Lambert, N.; Pugh, S. Y. R.; Taylor, F. (1986) The yeast alcohol dehydrogenase catalysed conversion of cinnamaldehyde to cinnamyl alcohol. J. Chem. Tech. Biotechnol. 36: 267-272.
15. Boyer, P. D. (1975) The Enzymes (Vol. 11). New York: Academic Press.
16. Brady, D.; Marchant, N. R.; McHale, L.; McHale, A. P. (1996) Ethanol production at 45℃ by kluyveromyces marxianus IMB3 immobilized in magnetically responsive alginate matrices. Biotechnol. Lett. 18: 1213-1216.
17. Bühner, M.; Sund, H. (1969) Yeast alcohol dehydrogenase:-SH group, disulfide groups, quaternary structure, and reactivation by reductive cleavage of disulfide groups. Eur. J. Biochem. 11: 73-79.
18. Bull, A. T.; Lagnadol, J. R.; Thomas, J. O.; Tipton, K. F. (1974) Companion to Biochemistry. London: Longman.
19. Carrea, G. (1984) Biocatalysis in water-organic solvent 2-phase systems. Trends Biotechnol. 3: 291-296.
20. Carrea, G.; Cremonesi, P. (1987) Enzyme-catalyzed steroid transformations in water-organic solvent two-phase systems. Meth. Enzymol. 136: 150-157.
21. Caruso, B. F. (2001) Nanoengineering of particle surfaces. Adv. Mater. 13: 11-22.
22. Chen, D. H.; Chen, H. H.; Huang, T. C. (1995) Deactivation kinetics of Yeast alcohol dehydrogenase in Aerosol-OT/isooctane reverse micelles. J. Chem. Eng. Jpn. 28: 551-555.
23. Chen, D. H.; Chen, H. H.; Huang, T. C. (1995) Kinetic behavior of yeast alcohol dehydrogenase in AOT/isooctane reverse micelles. J. Chem. Tech. Biotechnol. 64: 217-224.
24. Chen, D. H.; Wu, S. H. (2000) Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater. 12: 1354-1360.
25. Chen, J. P.; Su, D. R. (2001) Latex particles with thermo-flocculation and magnetic properties for immobilization of -chymotrypsin. Biotechnol. Prog. 17: 369-375.
26. Chen, S.; Li, N. (2002) Synthesis and characterization of DDP-coated PbO nanoparticles. J. Mater. Chem. 12: 1124-1127.
27. Chern, C. S.; Lee, C. K.; Ho, C. C. (1999) Electrostatic interaction between chitosan-modified latex particles and bovine serum albumin. Colloid Polym. Sci. 277: 979-985.
28. Chiang, C. L. (1999) Activity and stability of lipase in Aerosol-OT/isooctane reverse micelles. Biotechnol. Tech. 13: 453-457.
29. Cochrane, F. C.; Petach, H. H.; Henderson, W. (1996) Application of tris(hydroxymethyl)phosphine as a coupling agent for alcohol dehydrogenase immobilization. Enzyme Microb. Technol. 18: 373-378.
30. Creagh, A. L.; Prausnitz, J. M.; Blanch, H. W. (1993) Structural and catalytic properties of enzymes in reverse micelles. Enzyme Microb. Technol. 15: 383-392.
31. Creagh, A. L.; Prausnitz, J. M.; Blanch, H. W. (1993) The effect of aqueous surfactant solutions on alcohol dehydrogenase (LADH). Biotechnol. Bioeng. 41: 156-161.
32. Creighton, T. E. (1989) Protein Function:A Practical Approach. Oxford: IRL Press.
33. Cullity, B. D. (1972) Introduction to Magnetic Material. London: Addison-Wesley.
34. Curtis, A.; Wilkinson, C. (2001) Nanotechniques and approaches in biotechnology. Trends Biotechnol. 19: 97-101.
35. Cuyper, M. D.; Hodenius, M.; Lacava, Z. G. M.; Azevedo, R. B.; Silva, M. de F. da; Morais, P. C.; Santana, M. H. A. (2002) Attachment of water-soluble proteins to the surface of (magnetizable) phospholipid colloids via neutravidin-derivatized phospholipids. J. Colloid Interface Sci. 245: 274-280.
36. Das, S.; Mozumdar, S.; Maitra, A. (2000) Activity and conformation of yeast alcohol dehydrogenase (YADH) entrapped in reverse micelles. J. Colloid Interface Sci. 230: 328-333.
37. Davies, M. J.; Bruce, I. J.; Smethurst, D. E. (1994) Magnetic solid phase supports for affinity purification of nucleic acids. In: Pyle D L, ed. Separations for Biotechnology 3. Cambridge: The Royal Society of Chemistry, pp. 152-158.
38. De Gomez-Puyou, M. T.; Gomez-Puyou, A. (1998) Enzymes in low water systems. Crit. Rev. Biochem. Mol. Biol. 33: 53-89.
39. De, T. K.; Maitra, A. (1995) Solution behaviour of Aerosol OT in non-polar solvents. Adv. Colloid Interface Sci. 59: 95-193.
40. Denizli, A.; Tanyolaç, D.; Salih, B.; Özdural, A. (1998) Cibacron blue F3GA-attached polyvinylbutyral microbeads as novel magnetic sorbents for removal of Cu(II), Cd(II) and Pb(II) ions. J. Chromatogr. A 793: 47-56.
41. Denizli, A.; Say, R. (2001) Preparation of magnetic dye affinity adsorbent and its use in the removal of aluminium ions. J. Biomater. Sci. Polymer Edn. 12: 1059-1073.
42. Dixon, D. R. (1980) Magnetic adsorbents: Properties and applications. J. Chem. Tech. Biotechnol. 30: 572-578.
43. Dixon, M.; Webb, E. C.; Thorne, C. T. R.; Tipton, K. F. (1979) Enzymes. London: Longman.
44. Dresco, P. A.; Zaitsev, V. S.; Gambino, R. J.; Chu, B. (1999) Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15: 1945-1951.
45. Dordick, J. S. (1989) Enzymatic catalysis in monophasic organic-solvents. Enzyme Microb. Technol. 11: 194-211.
46. Edelstein, A. S.; Cammarata, R. C. (1996) Nanomaterials: Synthesis, Properties and Applications. Bristol: Institute of Physics Publishing.
47. Elaïssari, A.; Rodrigue, M.; Meunier, F.; Herve, C. (2001) Hydrophilic magnetic latex for nucleic acid extraction purification and concentration. J. Magn. Magn. Mater. 225: 127-133.
48. Ennis, M. P.; Wisdom, G. B. (1991) A magnetizable solid phase for enzyme extraction. Appl. Biochem. Biotechnol. 30: 155-164.
49. Eremin, A. N.; Metelitsa, D. I. (1985) Regulation of the catalytic activity of peroxidase in mixed reversed micelles of surfactants. Biochem. (USSR) 50: 91-97.
50. Fan, K. K.; Ouyang, P.; Wu, X.; Lu, Z (2001) Enhancement of the activity of papain in mixed reverse micellar systems in the presence of Tween80. J. Chem. Tech. Biotechnol. 76: 27-34.
51. Fendler, J. H. (1998) Nanoparticles and Nanostructured Film: Preparation, Characterization and Applications. New York: Wiley-VCH.
52. Feng, D.; Aldrich, C.; Tan, H. (2000) Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates. Hydrometallurgy 56: 359-368.
53. Förster, S.; Plantenberg, T. (2002) From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Ed. 41: 688-714.
54. Garcia, A.; Oh, S.; Engler, C. R. (1989) Cellulase immobilization on Fe3O4 and characterization. Biotechnol. Bioeng. 33: 321-326.
55. Ghassabian, S.; Ehtezazi, T.; Forutan, S. M.; Mortazavi, S. A. (1996) Dexamethasone-loaded magnetic albumin microspheres: Preparation and in vitro release. Int. J. Pharm. 130: 49-55.
56. Goldstein, A. N. (1997) Handbook of Nanophase Materials. New York: Marcel Dekker.
57. Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S. R.; Mandale, A. B.; Rao, M.; Sastry, M. (2001) Pepsin-gold colloid conjugates: Preparation, characterization, and enzymatic activity. Langmuir 17: 1674-1679.
58. Göpel, W. (1998) Bioelectronics and nanotechnologies. Biosens. Bioelectron. 13: 723-728.
59. Gupta, P. K.; Hung, C. T. (1989) Magnetically controlled targeted micro-carrier systems. Life Sci. 44: 175-186.
60. Häfeli, U.; Schütt, W.; Teller, J.; Zborowski, M. (1997) Scientific and Clinical Applications of Magnetic Carriers. New York: Plenum Press.
61. Halling, P. J.; Dunnill, P. (1980) Magnetic supports for immobilized enzymes and bioaffinity adsorbents. Enzyme Microb. Technol. 2: 2-10.
62. Harland, C. E. (1994) Ion Exchange: Theory and Practice. Cambridge: The Royal Society of Chemistry.
63. Harris, E. L. V.; Angal, S. (1989) Protein Purification Methods:A Practical Approach. New York: IRL Press.
64. Hatton, T. A. (1989) Reversed micellar extraction of proteins. In: Scamehorn, J. F,; Harwell, J. H., eds. Surfactant-Based Separation Process. New York: Marcel Dekker, pp. 55-90.
65. Hirschbein, B. L.; Brown, D. W.; Whitesides, G. M. (1982) Magnetic separations in chemistry and biochemistry. Chemtech 12: 172-179.
66. Hofman-Caris, C. H. M. (1994) Polymers at the surface of oxide nanoparticles. New J. Chem. 18: 1087-1096.
67. Horák, D.; Rittich, B.; Šafář, J.; Španová, A.; Lenfeld, J.; Beneš, M. J. (2001) Properties of RNase A immobilized on magnetic poly(2-hydroxyethyl methacrylate) microspheres. Biotechnol. Prog. 17: 447-452.
68. Hossain, M. J.; Takeyama, T.; Hayashi, Y.; Kawanishi, T.; Shimizu, N.; Nakamura, R. (1999) Enzymatic activity of Chromobacterium viscosum lipase in an AOT/Tween 85 mixed reverse micellar system. J. Chem. Tech. Biotechnol. 74: 423-428.
69. Hummel, W.; Kula, M. R. (1989) Dehydrogenases for the synthesis of chiral compounds. Eur. J. Biochem. 184: 1-13.
70. Hwang, J. H.; Dravid, V. P.; Teng, M. H.; Host, J. J.; Elliott, B. R.; Johnson, D. L.; Mason, T. O. (1997) Magnetic properties of graphitically encapsulated nickel nanocrystals. J. Mater. Res. 12: 1076-1082.
71. Izmailov, A. F.; Kiselev, M. V.; Vakurov, A. V.; Gladilin, A. K.; Levashov, A. V. (2000) -Chymotrypsin immobilized on ferromagnetic particles coated with titanium oxide:Production and catalytic characterization. Appl. Biochem. Microb. 36: 58-62.
72. Janolino, V. G.; Swaisgood, H. E. (1992) A spectrophotometric assay for solid phase primary amino groups. Appl. Biochem. Biotechnol. 36: 81-85.
73. Jiang, L.; Glidle, A.; Griffith, A.; McNeil, C. J.; Copper, J. M. (1997) Characterising the formation of a bioelectrochemical interface at a self-assembled monolayer using X-ray photoelectron spectroscopy. Bioelectrochem. Bioenerg. 42: 15-23.
74. Jones, J. B. (1986) Enzymes in organic synthesis. Tetrahedron 42: 3351-3403.
75. Josephson, L.; Perez, J. M.; Weissleder, R. (2001) Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Ed. 40: 3204-3206.
76. Katiyar, S. S.; Tapas, K. De (1990) Solubilization and activation of Yeast glucose-6-phosphate dehydrogenase in reverse micelles of mixed surfactants in organic solvents. Biochem. Intern. 20: 1127-1134.
77. Katz, E.; Sheeney-Haj-Ichia, L.; Bückmann, A. F.; Willner, I. (2002) Dual biosensing by magneto-controlled bioelectrocatalysis. Angew. Chem. Int. Ed. 41: 1343-1346.
78. Kazandjian, R. Z.; Klibanov, A. M. (1985) Regioselective oxidation of phenols catalyzed by polyphenol oxidase in chloroform. J. Am. Chem. Soc. 107: 5448-5450.
79. Keller, K.; Friedmann, T.; Boxman, A. (2001) The bioseparation needs for tomorrow. Trends Biotechnol. 19: 438-441.
80. Kennedy, J. F.; Cabral, J. M. S. (1993) Recovery Processes for Biological Materials. New York: John Wiley & Sons.
81. Khmelnitsky, Y. L.; Levashov, A. V.; Klyachko, N. L.; Martinek, K. (1988) Engineering biocatalytic systems in organic media with low water-content. Enzyme Microb. Technol. 10: 710-724.
82. Khng, H. P.; Cunliffe, D.; Davies, S.; Turner, N. A.; Vulfson, E. N. (1998) The synthesis of sub-micron magnetic particles and their use for preparative purification of proteins. Biotechnol. Bioeng. 60: 419-424.
83. Kitahara, A. (1980) Solubilization and catalysis in reversed micelles. Adv. Colloid Interface Sci. 12: 109-140.
84. Klibanov, A. M. (1986) Enzymes that work in organic solvents. Chemtech 16: 354-359.
85. Kobayashi, H.; Matsunaga, T. (1991) Amino-silane modified superparamagnetic particles with surface-immobilized enzyme. J. Colloid Interface Sci. 141: 505-511.
86. Kondo, A.; Fukuda, H. (1997) Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization. J. Ferment. Bioeng. 84: 337-341.
87. Koneracká, M.; Kopčanský, P.; Antalík, M.; Timko, M.; Ramchand, C. N.; Lobo, D.; Mehta, R. V.; Upadhyay, R. V. (1999) Immobilization of proteins and enzymes to fine magnetic particles. J. Magn. Magn. Mater. 201: 427-430.
88. Kovalenko, G. A.; Sokolovskii, V. D. (1983) Immobilization of oxyreductases on inorganic supports based on alumina-Immobilization of alcohol dehydrogenase on nonmodified and modified alumina. Biotechnol. Bioeng. 25: 3177-3184.
89. Krogh, T. N.; Berg, T.; Højrup, P. (1999) Protein analysis using enzymes immobilized to paramagnetic beads. Anal. Biochem. 274: 153-162.
90. Kurisu, S.; Ido, T.; Yokoyama, H. (1987) Surface effect on saturation magnetization of Co and Ti substituted Ba-Ferrite fine particles. IEEE Trans. Magn. 23: 3137-3139.
91. Kuznetsov, A. A.; Filippov, V. I.; Kuznetsov, O. A.; Gerlivanov, V. G.; Dobrinsky, E. K.; Malashin, S. I. (1999) New ferro-carbon adsorbents for magnetically guided transport of anti-cancer drugs. J. Magn. Magn. Mater. 194: 22-30.
92. Levashov, A. V.; Rariy, R. V.; Martinek, K.; Klyachko, N. L. (1993) Artificially glycosylated -chymotrypsin in reversed micelles of Aersol OT in octane. FEBS Lett. 336: 385-388.
93. Levison, P. R.; Badger, S. E.; Hathi, P.; Davies, M. J.; Bruce, I. J.; Grimm, V. (1998) New approaches to the isolation of DNA by ion-exchange chromatography. J. Chromatogr. A 827: 337-344.
94. Lilly, M. D. (1982) Two-liquid-phase biocatalytic reactions. J. Chem. Tech. Biotechnol. 32: 162-169.
95. Liu, C.; Honda, H.; Ohshima, A.; Shinkai, M.; Kobayashi, T. (2000) Development of chitosan-magnetite aggregates containing Nitrosomonas europaea cells for nitrification enhancement. J. Biosci. Bioeng. 89: 420-425.
96. Liu, D.; Ma, J.; Cheng, H.; Zhao, Z. (1998) Solubilization behavior of mixed reverse micelles: effect of surfactant component, electrolyte concentration and solvent. Colloids Surfaces A 143: 59-68.
97. Löster, K.; Seidel, S.; Kirstein, D.; Schneider, F.; Noll, F. (1992) Novel antibody coating of a magnetizable solid phase for use in enzyme immunoassays. J. Immunol. Methods 148: 41-47.
98. Lübbe, A. S.; Alexiou, C.; Bergemann, C. (2001) Clinical applications of magnetic drug targeting. J. Surg. Res. 95: 200-206.
99. Luisi, P. L. (1985) Enzymes hosted in reverse micelles in hydrocarbon solution. Angew. Chem. Int. Ed. 24: 439-450.
100. Luisi, P. L.; Henninger, F.; Joppich, M.; Dossena, A.; Casnati, G. (1977) Solubilization and spectroscopic property of -chymotrypsin in cyclohexane. Biochem. Biophys. Res. Commun. 74: 1384-1389.
101. Luisi, P. L.; Laane, C. (1986) Solubilization of enzymes in apolar solvents via reverse micelles. Trends Biotechnol. 4: 153-161.
102. Luisi, P. L.; Magid, L. J. (1986) Solubilization of enzymes and nucleic acids in hydrocarbon micellar solution. CRC Crit. Rev. Biochem. 20: 409-474.
103. Luthi, P.; Luisi, P. L. (1984) Enzymatic synthesis of hydrocarbon-soluable peptides with reverse micelles. J. Am. Chem. Soc. 106: 7285-7286.
104. Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y. (2002) Modifiyng the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2: 183-186.
105. Lyddiatt, A. (2002) Process chromatography:Current constraints and future options for the adsorptive recovery of bioproducts. Current Opinion in Biotechnol. 13: 95-103.
106. Mangeney, C.; Ferrage, F.; Aujard, I.; Marchi-Artzner, V.; Jullien, L.; Ouari, O.; Rékaï, E. D.; Laschewsky, A.; Vikholm, I.; Sadowski, J. W. (2002) Synthesis and properties of water-soluble gold colloids covalently derivatized neutral polymer monolayers. J. Am. Chem. Soc. 124: 5811-5821.
107. Margolin, A. L.; Klibanov, A. M. (1987) Peptide-synthesis catalyzed by lipases in anhydrous organic-solvents. J. Am. Chem. Soc. 109: 3802-3804.
108. Martinek, L.; Levashov, A. V.; Klyachko, N.; Khmelnitski, Y. L.; Berezin, I. V. (1986) Micellar enzymology. Eur. J. Biochem. 155: 453-468.
109. Martinek, L. (1989) Micellar enzymology-Pontentialities in fundamental and applied areas. Biochem. Intern. 18: 871-893.
110. Matsunaga, T.; Kawasaki, M.; Yu, X.; Tsujimura, N.; Nakamura, N. (1996) Chemiluminescence enzyme immunoassay using bacterial magnetic particles. Anal. Chem. 68: 3551-3554.
111. Mehta, R. V.; Upadhyay, R. V.; Charles, S. W.; Ramchand, C. N. (1997) Direct binding of protein to magnetic particles. Biotechnol. Tech. 11: 493-496.
112. Menger, F. M.; Yamada, K. (1979) Enzyme catalysis in water pools. J. Am. Chem. Soc. 101: 6731-6734.
113. Millan, A.; Palacio, F. (2001) Magnetic nanocomposites from nitrogen base polymers. Appl. Organometal. Chem. 15: 396-400.
114. Miyabayashi, A.; O’Shannessy, D. (1989) Operational characteristics of a new enzyme electrode based on electromagnetic entrapment of the biocatalyst bound to magnetic particles. Biotechnol. Appl. Biochem. 11: 379-386.
115. Mornet, S.; Vekris, A.; Bonnet, J.; Duguet, E.; Grasset, F.; Choy, J. H.; Portier, J. (2000) DNA-magnetite nanocomposite materials. Mater. Lett. 42: 183-188.
116. Mullor, S. G.; Sánchez-Cabezudo, M.; Ordieres, A. J. M.; Ruiz, B. L. (1996) Alcohol biosensor based on alcohol dehydrogenase and meldola blue immobilized into a carbon paste electrode. Talanta 43: 779-784.
117. Murray, R. W. (1980) Chemically modified electrodes. Acc. Chem. Res. 13: 135-141.
118. Mykhaylyk, O.; Cherchenko, A.; Ilkin, A.; Dudchenko, N.; Ruditsa, V.; Novoseletz, M.; Zozulya, Y. (2001) Glial brain tumor targeting of magnetite nanoparticles in rats. J. Magn. Magn. Mater. 225: 241-247.
119. Nagano, H.; Machida, Y.; Iwata, M.; Imada, T.; Noguchi, Y.; Matsumoto, A.; Nagai, T. (1997) Preparation of magnetic granules containing bleomycin and its evaluation using model esophageal cancer. Int. J. Pharm. 147: 119-125.
120. Nazário, L. M. M.; Hatton, T. A.; Crespo, J. P. S. G. (1996) Nonionic cosurfactants in AOT reversed micelles: effect on percolation, size, and solubilization site. Langmuir 12: 6320-6335.
121. Ngah, W. S. W.; Endud, C. S.; Mayanar, R. (2002) Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym. 50: 181-190.
122. Niemeyer, C. M. (2001) Nanoparticles, protein, and nucleic acid:biotechnology meets materials science. Angew. Chem. Int. Ed. 40: 4128-4158.
123. Nikolova, P.; Goldman, H.; Ward, O. P. (1995) Factor affecting catalytic performance in YADH-catalyzed reductions in non-conventional media. Can. J. Chem. Eng. 73: 510-515.
124. Nishimura, K.; Hasegawa, M.; Ogura, Y.; Nishi, T.; Kataoka, K.; Handa, H. (2002) 4℃ preparation of ferrite nanoparticles having protein molecules immobilized on their surface. J. Appl. Phys. 91: 8555-8556.
125. Nu, S.; Böttcher, H.; Wurm, H.; Hallensleben, M. L. (2001) Gold nanoparticles with covalently attached polymer chains. Angew. Chem. Int. Ed. 40: 4016-4018.
126. O’Brien, S. M.; Thomas, O. R. T.; Dunnill, P. (1996) Non-porous magnetic chelator supports for protein recovery by immobilized metal affinity adsorption. J. Biotechnol. 50: 13-25.
127. Ogino, K.; Uchiyama, H.; Ohsato, M.; Abe, M. (1987) Fading phenomenon of azo oil dye in anionic-nonionic surfactant solutions. J. Colloid Interface Sci. 116: 81-87.
128. Ooshima, H.; Genko, Y.; Harano, Y. (1981) Stability of immobilized yeast alcohol dehydrogenase. Biotechnol. Bioeng. 23: 2851-2862.
129. Orlich, B.; Berger, H.; Lade, M.; Schomäcker, R. (2000) Stability and activity of alcohol dehydrogenases in w/o-microemulsions: enantioselective reduction including cofactor regeneration. Biotechnol. Bioeng. 70: 638-646.
130. Oster, J.; Parker, J.; Brassard, L. à (2001) Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences. J. Magn. Magn. Mater. 225: 145-150.
131. Oyama, K.; Kihara, K. (1984) A new horizon for enzyme technology. Chemtech 14: 100-105.
132. Ozaki, H.; Liu, Z.; Terashima, Y. (1991) Utilization of microorganisms immobilized with magnetic particles for sewage and wastewater treatment. Wat. Sci. Tech. 23: 1125-1136.
133. Pandey, P. C.; Upadhyay, S.; Tiwari, I.; Tripathi, V. S. (2001) An organically modified silicate-based ethanol biosenor. Anal. Biochem. 288: 39-43.
134. Peña, S. R. N.; Raina, S.; Goodrich, G. P.; Fedoroff, N. V.; Keating, C. D. (2002) Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides. J. Am. Chem. Soc. 124: 7314-7323.
135. Perrin-Cocon, L. A.; Chesne, S.; Pignot-Paintrand, I.; Marche, P. N.; Villiers, C. L. (2001) Use of magnetic nanobeads to study intracellular antigen processing. J. Magn. Magn. Mater. 225: 161-168.
136. Peters, J. (1998) Dehydrogenase-Characteristics, design of reaction conditions, and applications. In: Rehm, H. J.; Reed, G.; Pühler, A.; Stadler, P., eds. Biotechnology 8a. Weinheim: WILEY-VCH Verlag GmbH, pp. 391-474.
137. Pieters, B. R.; Williams, R. A.; Webb, C. (1992) Magnetic carrier technology. In: Williams, R. A., ed. Colloid and Surface Engineering: Applications in the Process Industries. Oxford: Butterworth-Heinemann, pp. 248-286.
138. Pileni, M. P. (1989) Structure and Reactivity in Reverse Micelles. Amsterdam: Elsevier.
139. Pinheiroro, H. M.; Kennedy, J. F.; Cabral, J. M. S. (1996) Immobilized enzymes and cells. In: Brash, J. L.; Wojciechowski, P. W., eds. Interfacial Phenomena and Bioproducts. New York: Marcel Dekker, pp. 311-350.
140. Puchkaev, A. V.; Girina, N. V.; Vlasov, A. P.; Metelitza, D. I. (1997) Effect of surfactant nature on urease stability in reversed micellar systems. Biochem. (Moscow) 62: 1003-1011.
141. Rariy, R. V.; Bec, N.; Klyachko, N. L.; Levashov, A. V.; Balny, C. (1998) Thermobarostability of -chymotrypsin in reversed micelles of Aerosol OT in octane solvated by water-glycerol mixtures. Biotechnol. Bioeng. 57: 552-556.
142. Rariy, R. V.; Bec, N. B.; Saldana, J. L.; Nametkin, S. N.; Mozhaev, V. V.; Klyachko, N. L.; Levashov, A.V.; Balny, C. (1995) High-pressure stabilization of -chymotrypsin entrapped in reversed micelles of Aerosol OT in octane against thermal inactivation. FEBS Lett. 364: 98-100.
143. Reetz, M. T.; Zonta, A.; Vijayakrishnan, V.; Schimossek, K. (1998) Entrapment of lipase in hydrophobic magnetite-containing sol-gel materials: magnetic separation of heterogeneous biocatalysts. J. Mol. Catal. A 134: 251-258.
144. Reslow, M.; Adlercreutz, P.; Mattiasson, B. (1988) On the importance of the support material for bioorganic synthesis. Eur. J. Biochem. 172: 573-578.
145. Richardson, J.; Hawkins, P.; Luxton, R. (2001) The use of coated paramagnetic particles as a physical label in a magneto-immunoassy. Biosens. Bioelectron. 16: 989-993.
146. Rittich, B.; Španová, A.; Ohlashennyy, Y.; Lenfeld, J.; Rudolf, I.; Horák, D.; Beneš, M. J. (2002) Characterization of deoxyribonuclease I immobilized on magnetic hydrophilic polymer particles. J. Chromatogr. B 774: 25-31.
147. Roath, S. (1993) Biological and biomedical aspects of magnetic fluid technology. J. Magn. Magn. Mater. 122: 329-334.
148. Ruckenstein, E.; Zeng, X. (1997) Macroporous chitin affinity membranes for lysozyme separation. Biotechnol. Bioeng. 56: 610-617.
149. Rudge, S. R.; Kurtz, T. L.; Vessely, C. R.; Catterall, L. G.; Williamson, D. L. (2000) Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials 21: 1411-1420.
150. Ruuge, E. K.; Rusetski, A. N. (1993) Magnetic fluids as drug carriers: Targeted transport of drugs by a magnetic field. J. Magn. Magn. Mater. 122: 335-339.
151. Sadana, A. (1988) Assessing disguised deactivation kinetics in biotechnological processes. Trends Biotechnol. 6: 84-87.
152. Šafařík, I. (1995) Removal of organic polycyclic compounds from water solutions with a magnetic chitosan based sorbent bearing copper phthalocyanine dye. Wat. Res. 29: 101-105.
153. Šafařík, I.; Nymburská, K.; Šafaříková, M. (1997) Adsorption of water-soluble organic dyes on magnetic charcoal. J. Chem. Tech. Biotechnol. 69: 1-4.
154. Šafařík, I.; Ptáčková, L.; Koneracká, M.; Šafaříková, M.; Timko, M.; Kopčanský, P. (2002) Determination of selected xenobiotics with ferrofluid-modified trypsin. Biotechnol. Lett. 24: 355-358.
155. Šafařík, I.; Šafaříková, M. (1999) Use of magnetic techniques for the isolation of cells. J. Chromatogr. B 722: 33-53.
156. Šafařík, I.; Šafaříková, M. (2002) Magnetic nanoparticles and biosciences. Monatshefte für Chemie 133: 737-759.
157. Sahoo, Y.; Pizem, H.; Fried, T.; Golodnitsky, D.; Burstein, L.; Sukenik, C. N.; Markovich, G. (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles:a comparison with fatty acid. Langmuir 17: 7907-7911.
158. Sanchez, C.; Soler-Illia, G. J. de A. A.; Ribot, F.; Lalot, T.; Mayer, C. R.; Cabuil, V. (2001) Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 13: 3061-3083.
159. Sarcar, S.; Jian, T. K.; Maitra, A. (1992) Activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micelles. Biotechnol. Bioeng. 39: 474-478.
160. Sauzedde, F.; Elaissari, A.; Pichot, C. (2000) Thermosensitive magnetic particles as solid phase support in an immunoassay. Macromol. Symp. 151: 617-623.
161. Schein, C. H. (1990) Solubility as a function of protein-structure and solvent components. Biotechnol. 8: 308-315.
162. Schimid, G. (1994) Clusters and Colloids: From Theory to Application. New York: Wiley-VCH.
163. Schöpp, W.; Grunow, M. (1986) Immobilization of yeast ADH by adsorption onto polyaminomethylstyrene. Appl. Microb. Biotechnol. 24: 271-276.
164. Schütt, W.; Grüttner, C.; Häfeli, U.; Zborowski, M.; Teller, J.; Putzar, H.; Schümichen, C. (1997) Applications of magnetic targeting in diagnosis and therapy – possibilities and limitations: a mini-review. Hybridoma 16: 109-117.
165. Scopes, R. K. (1987) Protein Purification:Principles and Practice. New York: Springer-Verlag.
166. Setchell, C. H. (1985) Magnetic separations in biotechnology-A review. J. Chem. Tech. Biotechnol. 35B: 175-182.
167. Shafi, K. V. P. M.; Gedanken, A.; Prozorov, R.; Balogh, J. (1998) Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem. Mater. 10: 3445-3450.
168. Shimomura, M.; Ohta, M.; Sugiyama, N.; Oshima, K.; Yamauchi, T.; Miyauchi, S. (1999) Properties of -chymotrypsin covalently immobilized on poly(acrylic acid)-grafted magnetite particles. Polym. J. 31: 274-278.
169. Shinkai, M.; Honda, H.; Kobayashi, T. (1991) Preparation of fine magnetic particles and application for enzyme immobilization. Biocatalysis 5: 61-69.
170. Shioi, A,; Harada, M.; Takahashi, H.; Adachi, M. (1997) Protein extraction in a tailored reversed micellar system containing nonionic surfactants. Langmuir 13: 609-616.
171. Shioi, A.; Kishimoto, T.; Adachi, M.; Harada, M. (1997) Reactivity of -chymotrypsin in reversed micelles containing nonionic surfactants. J. Chem. Eng. Jpn. 30: 1130-1133.
172. Shipway, A. N.; Willner, I. (2001) Nanoparticles as structural and functional units in surface-confined architectures. Chem. Commun. 20: 2035-2045.
173. Siegel, R. W.; Hu, E.; Roco, M. C. (1999) WTEC panel report on nanostructure science and technology: R & D status and trends in nanoparticles, nanostructured materials, and nanodevices. Boston: Kluwer Academic.
174. Soni, S.; Desai, J. D.; Devi, S. (2001) Immobilization of yeast alcohol dehydrogenase by entrapment and covalent binding to polymeric supports. J. Appl. Polym. Sci. 82: 1299-1305.
175. Sonti, S. V.; Bose, A. (1995) Cell separation using Protein-A-coated magnetic nanoclusters. J. Colloid Interface Sci. 170: 575-585.
176. Spirovska, G.; Chaudhuri, J. B. (1998) Sucrose enhances the recovery and activity of ribonuclease A during reversed micelle extraction. Biotechnol. Bioeng. 58: 374-379.
177. Suber, L.; Foglia, S.; Ingo, G. M.; Boukos, N. (2001) Synthesis, and structural and morphological characterization of iron oxide-ion-exchange resin and –cellulose nanocomposites. Appl. Organometal. Chem. 15: 414-420.
178. Suzawa, T.; Shirahama, H. (1991) Adsorption of plasma proteins onto polymer lattices. Adv. Colloid Interface Sci. 35: 139-172.
179. Tatsumi, K.; Wada, S.; Ichikawa, H. (1996) Removal of chlorophenols from wastewater by immobilized horseradish peroxidase. Biotechnol. Bioeng. 51: 126-130.
180. Taton, T. A. (2002) Nanostructures as tailored biological probes. Trends Biotechnol. 20: 277-279.
181. Taylor, J. I.; Hurst, C. D.; Davies, M. J.; Sachsinger, N.; Bruce, I. J. (2000) Application of magnetite and silica-magnetite composites to the isolation of genomic DNA. J. Chromatogr. A 890: 159-166.
182. Teotia, S.; Gupta, M. N. (2001) Purification of -amylases using magnetic alginate beads. Appl. Biochem. Biotechnol. 90: 211-220.
183. Theorell, H.; Bonnichsen, R. (1951) Studies on liver alcohol dehydrogenase-I. Equilibria and initial reaction velocities. Acta. Chem. Scand. 5: 1105-1126.
184. Tong, X. D.; Sun, Y. (2001) Agar-based magnetic affinity support for protein adsorption. Biotechnol. Prog. 17: 738-743.
185. Tong, X. D.; Xue, B.; Sun, Y. (2001) A novel magnetic affinity support for protein adsorption and purification. Biotechnol. Prog. 17: 134-139.
186. Toshima, N.; Yonezawa, T. (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New. J. Chem. 1179-1201.
187. Varlan, A. R.; Suls, J.; Jacobs, P.; Sansen, W. (1995) A new technique of enzyme entrapment for planar biosensors. Biosens. Bioelectron. 10: 15-19.
188. Vanleeuwen, D. A.; Vanruitenbeek, J. M.; Dejongh, L. J.; Ceriotti, A.; Pacchioni, G.; Häberlen, O. D.; Rösch, N. (1994) Quenching of magnetic-moments by ligand-metal interactions in nanosized magnetic metal-clusters. Phys. Rev. Lett. 73: 1432-1435.
189. Verhaert, R. M. D.; Hilhorst, R.; Visser, A. J. W. G.; Veeger, C. (1992) The optimization of enzyme catalysis in organic media. In: Gomez-Puyou A, ed. Biomolecules in Organic Solvents. Boca Raton: CRC Press, pp. 133-162.
190. Wahlgren, M. C.; Arnebrant, T.; Paulsson, M. A. (1993) The adsorption from solutions of -lactoglobulin mixed with lactoferrin or lysozyme onto silica and methylated silica surfaces. J. Colloid Interface Sci. 153: 46-53.
191. Wang, J.; Xu, D.; Polsky, R. (2002) Magnetically-induced solid-state electrochemical detection of DNA hybridization. J. Am. Chem. Soc. 124: 4208-4209.
192. West, J. L.; Halas, N. J. (2000) Applications of nanotechnology to biotechnology. Current Opinion in Biotechnol. 11: 215-217.
193. Whitesides, G. M.; Kazlauskas, R. Z.; Josephson, L. (1983) Magnetic separations in biotechnology. Trends Biotechnol. 1: 144-148.
194. Whitesides, G. M.; Wong, C. H. (1985) Enzymes as catalysts in synthetic organic chemistry. Angew. Chem. Int. Ed. Engl. 24: 617-638.
195. Williams, A. K.; Hupp, J. T. (1998) Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes. J. Am. Chem. Soc. 120: 4366-4371.
196. Wiseman, A. (1981) Alcohol dehydrogenase: Immobilisation and applications in analysis and synthesis . In: Wiseman A, ed. Topics in Enzyme and Fermentation Biotechnology 5. West Sussex: Ellis Horwood, pp. 337-354.
197. Wong, C. H.; Whitesides, G. M. (1982) Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration using ethanol/alcohol dehydrogenase/aldehyde dehydrogenase and methanol/alcohol dehydrogenase/aldehyde dehydrogenase/formate dehydrogenase. J. Org. Chem. 47: 2816-2818.
198. Xue, B.; Sun, Y. (2002) Fabrication and characterization of a rigid magnetic matrix for protein adsorption. J. Chromatogr. A 947: 185-193.
199. Xu, L.; Li, M.; Wang, E. (2002) Nanosized inorganic-organic hybrid between polyoxometalate anion [PW9Co3O37]9- and -phenylenediamine. Mater. Lett. 54: 303-308.
200. Xu, Z.; Liu, Q.; Finch, J. A. (1999) Engineering of nanosize superparamagnetic particles for use in magnetic carrier technology. In: Schwarz J A, Contescu C I, eds. Surfaces of Nanoparticles and Porous Materials. New York: Marcel Dekker, pp. 31-50.
201. Yamada, Y.; Kuboi, R.; Komasawa, I. (1993) Increased activity of Chromobacterium viscosum lipase in Aerosol OT reverse micelles in the presence of nonionic surfactants. Biotechnol. Prog. 9: 468-472.
202. Yang, M.; Li, H. L. (2001) Determinationn of trace hydrazine by differential pulse voltammetry using magnetic microspheres. Talanta 55: 479-484.
203. Zadow, J. G.; Hill, R. D. (1975) The precipitation of proteins by carboxymethyl cellulose. J. Dairy Res. 42: 267-275.
204. Zaitsev, V. S.; Filimonov, D. S.; Presnyakov, I. A.; Gambino, R. J.; Chu, B. (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J. Colloid Interface Sci. 212: 49-57.
205. Zakas, A.; Klibanov, A. M. (1986) Substrate-specificity of enzymes in organic-solvents vs water is reversed. J. Am. Chem. Soc. 108: 2767-2768.
206. Zakas, A.; Klibanov, A. M. (1988) Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 263: 3194-3201.
207. Zakas, A.; Klibanov, A. M. (1988) The effect of water on enzyme action in organic media. J. Biol. Chem. 263: 8017-8021.
208. Zhang, Y.; Kohler, N.; Zhang, M. (2002) Surface modification of superparamagnetic magnetic nanoparticles and their intracellular uptake. Biomaterials 23: 1553-1561.
209. 尹邦躍 (2002) 奈米時代,臺北:五南。
210. 史宗淮 (1995) 微粉製程技術簡介,化工 42: 28-35.
211. 吳明立 (2001) 微乳化系統製備雙金屬奈米粒子之研究,國立成功大學化學工程研究所博士論文。
212. 邱大維 (1999) 微乳化法製備聚丙烯醯胺奈米粒子之研究,國立成功大學化學工程研究所碩士論文。
213. 林景正,賴宏仁 (1999) 奈米材料技術與發展趨勢,工業材料 153: 95-101。
214. 馬遠榮 (2002) 奈米科技,臺北:商周。
215. 郭傑民,洪哲穎,熊光濱 (2000) 生物觸媒之現況與發展,化工資訊 4月:23-39。
216. 莊萬發 (1998) 超微粒子理論應用,臺南:復漢。
217. 陳育裕 (1998) 鐵氧超微磁粉之製備研究,國立成功大學化學工程研究所碩士論文。
218. 陳東煌 (1992) 固定化尿素酶膜反應分離器去除水溶液中尿素之動力學研究,國立成功大學化學工程研究所博士論文。
219. 陳献鑫 (1994) 醇脫氫素於逆微胞系統中催化反應之研究,國立成功大學化學工程研究所碩士論文。
220. 陳國誠 (1985) 生化工程學,臺北:合記。
221. 陳國誠 (1989) 酵素工程學,臺北:藝軒。
222. 張立德 (2000) 納米材料,北京:化學工業。
223. 張立德,牟季美 (2000) 納米材料和納米結構,北京:科學。
224. 張志焜,崔作林 (2000) 納米技術與納米材料,北京:國防工業。
225. 張煦,李學養 (1982) 磁性物理學,臺北:聯經。
226. 黃定加 (1992) 醇脫氫酵素之動力學研究,國科會專題研究報告。
227. 黃定加 (1993) 醇脫氫酵素之動力學及其反應器之研究,國科會專題研究報告。
228. 黃忠良 (1999) 磁性陶瓷,臺南:復漢。
229. 黃忠良 (1999) 磁性流體理論應用,臺南:復漢。
230. 黃德歡 (2002) 改變世界的納米技術,臺北:瀛舟。
231. 廖建勛 (1998) 奈米材料的發展動態,化工資訊 2月:20-27。
232. 劉英俊 (1994) 酵素工程,臺北:中央。
233. 鄭振東 (1999) 實用磁性材料,臺北:全華。
234. 歐靜枝 (1997) 酵素,臺南:復漢。
235. 賴明良 (2001) 木聚糖水解酵素之純化與特性探討,國立成功大學化學工程研究所碩士論文。
236. 蘇品書 (1998) 超微粒子材料技術,臺南:復漢。
237. 蘇遠志,黃世佑 (1997) 微生物化學工程學,臺北:華香園。
238. 吳國卿,董玉蘭 (1999) 奈米粒子材料的觸媒性質,化工資訊 5月:42-46。
239. 工研院工業材料研究所 (2001) 2001材料奈米技術專刊,臺北:經濟部技術處。