簡易檢索 / 詳目顯示

研究生: 陳俊吉
Chen, Chun-Chi
論文名稱: 應用介質工程和基質工程改善木瓜脂肪分解酵素對(R,S)-naproxen氧酯之動力分割
Applications of medium engineering and substrate engineering to improving Carica papaya lipase-catalyzed kinetic resolution of (R,S)-naproxen esters
指導教授: 陳特良
Chen, Teh-Liang
蔡少偉
Tsai, Shau-Wei
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 141
中文關鍵詞: Carica papaya 脂肪分解酵素(R, S)-naproxen 三氟乙酯有機動力分割
外文關鍵詞: organo-soluble base, substrate-assisted catalysis., Carica papaya lipase, (R, kinetic resolution, 2, S)-naproxen 2, 2-trifluoroethyl ester
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    木瓜乳汁中所含之木瓜脂肪分解酵素已被發現可應用於對掌性異構酸與其衍生物之動力分割。本論文旨在從篩選和純化酵素、介質工程以及基質工程三個不同的角度切入,探討應用此酵素於(R,S)-naproxen酯類之光學分割的製程改善。
    在篩選和純化酵素方面,首先於含有飽和水之有機溶劑中進行水解分割(R,S)-naproxen三氟乙酯時,我們探討溫度及溶劑效應對於此酵素活性及鏡像選擇性(E值)的影響。結果發現以異辛烷為反應溶劑時,在最佳反應溫度60℃時有最大的初始反應速率,且擁有高的E值122。另外,在較親水性的溶劑像是環己烷或是醚類中,酵素的活性和E值都會嚴重下降。進一步進行動力學分析,應用Michaelis-Menten不可逆反應機構並考慮產物抑制及酵素失活的現象,經偶合動力參數後可得到實驗值與理論值相吻合的結果。比較粗Carica papaya 脂肪分解酵素(CPL)與Candida rugosa脂肪分解酵素(CRL)之表現,顯示前者在活性和選擇性上都優於後者,且在60℃、異辛烷為反應溶劑時,前者都有較穩定的表現。
    在含有飽和水之有機溶劑中進行反應時,發現利用來自厄瓜多的Carica pentagona Heilborn木瓜脂肪分解酵素(CPHL)亦可得到不錯的結果。另外,與CPL比較,發現兩者對於較親水性的溶劑都有較差的反應結果,且都會被產物(酸或醇)所抑制。當此兩酵素以部份純化的形式進行反應時,在酵素的活性和選擇性上,均可得到不錯的改善。此外,由熱力學分析指出活化焓對於反應選擇性E值有較大的影響,而其中對於利用CPL在(R,S)-fenoprofen三氟乙硫酯的分割上卻是個例外。
    在介質工程方面,探討添加有機可溶性的鹼對於利用部份純化木瓜脂肪分解酵素(pCPL)在含有飽和水異辛烷的分割效應時,發現不同種類鹼對酵素的活性和選擇性具有相當不同程度的影響,亦即其可扮演酵素活化劑或酵素抑制劑。當添加120 mM 三乙基胺於反應系統時,可活化pCPL而使反應初始速率有2.24倍增加的效果。在60 mM 的三乙基胺的添加下,對於所有的酵素活性都有改善,但選擇性E值卻有下降的趨勢,不過對以pCPHL為觸媒之反應系統卻有相反的結果。應用Michaelis-Menten不可逆反應機構偶合得到實驗值與理論值吻合的結果,且由動力學分析顯示在酵素進行醯化反應(acylation)時,質子由四面中間體(tetrahedral intermediates)到醯化酵素中間體(acyl-enzyme)的步驟相較於四面中間體的形成有著較顯著受到添加物影響。然而,對於扮演酵素抑制劑的有機鹼而言,並沒有觀察到明顯的相互關係。
    在基質工程方面,利用pCPL在含有飽和水的異辛烷酯類水解分割上,發現基質含有不同拉電子能力的離去基對於初始反應速率有著很明顯的影響。利用不含有二甲基胺基質且離去基拉電子能力(inductive number)由0.01增加為0.4時,酵素的活性會有630倍的提升,因而可推論酵素反應決定步驟是在醯化的步驟。另外,當利用inductive number由0.01到0.11的基質時,我們也推測在此反應中,質子由四面中間體裂解成醯化酵素中間體的步驟可能是速率決定步驟。另外,我們也利用了一個新的基質工程的方法-質子轉移設計(proton shuttle device)的概念,顯示由於增加過渡狀態時分子內氫鍵而大大的改善酵素的活性。對於離去基含有相同拉電子能力的兩個基質,應用這種方式可使反應速率增加約60倍,且由動力學分析可得到k2S/KmS有80到90倍的提升。另外,在相同基態假設下,所增加的倍數(相當於11.5~11.9 kJ/mol)也與增加一個氫鍵的能量相符合。對於不同來源脂肪分解酵素的影響方面,此設計也具有同樣增加酵素活性的效果。

    ABSTRACT

    The papaya lipase stored in the crude papain from spay-dried latex of Carica papaya has been discovered as a versatile enentioselective biocatalyst to obtain chiral acids by using hydrolytic resolution of their racemic esters. The dogma of this dissertation is to improve the lipase-catalyzed hydrolysis of (R,S)-naproxen ester practised by adopting the enzyme screening, purification, medium engineering, and substrate engineering concepts.
    In terms of the enzyme screening and purification, we employed the hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl ester via a crude Carica papaya lipase in water-saturated organic solvents as the model system, where effects of temperature and solvents on the lipase activity and enantioselectivtiy were studied. The optimal temperature of 60℃ for the maximum initial rate of (S)-ester with a high enantiomeric ratio (E = 122) in water-saturated isooctane is obtainable. Additionally, less hydrophobic solvents of cyclohexane and MTBE than isooctane are vital on decreasing the lipase activity and enentioselectivity. A kinetic analysis is further performed by using a Michaleis-Menten mechanism combined with the product inhibition and lipase deactivation, leading to good agreements of experimental and best-fitted conversions. Comparisons of enzyme performances for Carica papaya and Candida rugosa lipases indicate that the former is more enantioselective, active, and stable for (S)-naproxen ester.
    A crude lipase stored in Caraica pentagona Heilborn latex was explored as an effective enantioselective biocatalyst for the hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl ester in water-saturated solvents. A comparison of the enzyme performances in terms of activity or enantioselective with those from Carica papaya lipase indicates that both enzymes display low tolerance to the hydrophilic solvent and are inhibited by (S)-naproxen or 2,2,2-trifluoroethanol. Improvements on the lipase activity and enantioselectivity are found when using both lipases in partially purified form as the biocatalysts. By utilizing the thermodynamic analysis, the enantiomeric discrimination is mainly driven by the difference of activation enthalpy for all reaction systems except for the hydrolysis of (R,S)-fenoprofen 2,2,2-trifluoroethyl thioester employing Carica papaya lipases as the biocatalyst.
    As for medium engineering, the performance of pCPL for the hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl ester in water-saturated isooctane is altered when adding a variety of organo-soluble bases that act as either enzyme activators (i.e. TEA, MP, TOA. DPA, PY, and DMA), or enzyme inhibitors (i.e. PDP, DMAP, and PP). Triethylamine (TEA) was selected as the best enzyme activator as 2.24-fold increase of the initial rate for (S)-naproxen ester was achieved when adding 120 mM of the base. Furthermore, the activity enhancement for all lipases can also be observed, but with a negative effect on enantioselectivity, except for the partially purified lipase from Carica pentagona Heilborn as 60 mM TEA is added. By applying an expanded Michaelis-Menten mechanism for the acylation step, the kinetic analysis indicates that the proton transfer for the breakdown of tetrahedral intermediates to acyl-enzyme intermediates is more affected than that for the formation of tetrahedral intermediates when adding an enzyme activator. However, no correlation for the proton transfer in the acylation step is found when adding the base acting as an enzyme deactivator.
    As for substrate engineering, with the hydrolytic resolution of (R,S)-naproxen ester via pCPL in water-saturated isooctane at 45℃ as the model system, the substrate containing a leaving group of different electron-withdraw capability has an extreme influence on the enzyme activity. About 630-fold enhancement of the initial rate for (S)-ester are obtainable when increasing the inductive parameter from 0.01 to 0.4 for the alcohol without containing a dimethylamino group. This implies that the acylation step must be the rate-limiting step. Meanwhile, we also assume that the bond-breaking of tetrahedral intermediate to acyl-enzyme intermediate may be the rate-limiting step for the compounds that alcohol group is hard to leave (e.g. 0.01 to 0.11). On the other hand, a novel means of using substrate-assisted catalysis indicates that the proton shuttle device acts as an effective tool for improving the lipase activity by forming an extra intramolecular hydrogen bond in the transition state. For the substrates with the same inductive parameter of 0.01 or 0.03, about 61-fold enhancement of lipase activity is obtainable. Moreover, about 80 ~ 90-fold increase of k2S/KmS implies the free energy difference of 11.5 ~ 11.9 kJ/mol between the transient states if one assumes the same ground states for both substrates. These values agree well with the stabilization by an additional hydrogen bond. Similar results for the activity enhancement are also found for using other lipases.

    CONTENTS Figureslegend..................................IX Tables list..................................XIII Schemes list..................................XIV Nomenclature...................................XV Chapter 1 Introduction 1-1 Enzymes.....................................1 1-1-1 History and definition....................1 1-1-2 Classification and nomenclature...........2 1-1-3 Structure and advantages..................4 1-1-4 Industrial biocatalysis: past, present, and future......................................6 1-2 Plant lipases and lipases..................11 1-2-1 Characteristics and sources of lipase....11 1-2-2 Structure and mechanism..................11 1-2-3 Applications.............................15 1-2-4 Carica papaya lipase.....................16 1-3 Enantiomers................................18 1-3-1 Introduction.............................18 1-3-2 Characterization and significance........19 1-3-3 Methods of preparation...................19 1-4 Kinetic resolution.........................22 1-4-1 Definition...............................22 1-4-2 Principle and model......................23 1-5 Literature reviews and motivation..........25 1-5-1 Potential plant lipases..................25 1-5-2 Effects of additives on lipase activity and enantioselecivity..........................26 1-5-3 Substrate-assisted catalysis on improving lipase activity................................26 Chapter 2 Kinetic Resolution by Crude Carica papaya Lipase 2-1 Introduction...............................32 2-2 Materials and methods......................34 2-2-1 Materials................................34 2-2-2 Analysis.................................34 2-2-3 Synthesis of (R,S)-naproxen 2,2,2-trifluoroethyl ester..........................34 2-2-4 Kinetic resolution of (R,S)-naproxen ester..........................................35 2-3 Model development..........................35 2-4 Results and discussion.....................36 2-4-1 Effects of temperature..................36 2-4-2 Effects of solvents.....................39 2-4-3 Kinetic analysis........................40 2-4-4 Comparisons with crude Candida rugosa lipases (CRL)..................................40 Chapter 3 Kinetic Resolution by Partially Purified Carica papaya and pentagona Heilborn Lipases 3-1 Introduction...............................46 3-2 Materials and methods......................46 3-2-1 Materials................................47 3-2-2 Analysis.................................47 3-2-3 Preparation of partially purified lipases........................................47 3-2-4 Temperature and solvent effects on kinetic resolution.....................................48 3-2-5 Kinetic and thermodynamics analysis......48 3-3 Results and discussion.....................49 3-3-1 Thermodynamics analysis..................49 3-3-1-1 Effects of temperature.................49 3-3-1-2 Compensation of activation entropy and enthalpy.......................................52 3-3-2 Effects of organic solvents..............61 3-3-3 Kinetic analysis.........................62 Chapter 4 Effects of additives on lipase activity and enantioselectivity 4-1 Introduction...............................66 4-1-1 Mechanism of lipase-catalyzed reaction...66 4-1-2 Effects of additions on lipase activity or enantioselectivity.............................67 4-2 Materials and methods......................68 4-2-1 Materials................................68 4-2-2 Analysis.................................69 4-2-3 Kinetic analysis.........................69 4-2-4 Model development........................70 4-3 Results and discussion.....................73 4-3-1 Effects of base type and concentration...73 4-3-2 Effects of base type and concentration for various lipases................................75 4-3-3 Kinetic analysis.........................87 Chapter 5 Substrate-assisted catalysis (SAC) on improving lipase activity 5-1 Introduction...............................98 5-2 Materials and methods.....................100 5-2-1 Materials...............................100 5-2-2 Synthesis of (R,S)-naproxen esters......101 5-2-3 Analysis................................103 5-2-4 Kinetic analysis.......................114 5-3 Results and discussion....................117 5-3-1 Effects of leaving group on lipase activity......................................117 5-3-2 Kinetic analysis........................119 Chapter 6 Conclusions 6-1 A novel biocatalyst: Carica papaya lipase.123 6-2 Kinetic resolution via various sources of plant lipase..................................123 6-3 Additives effects on lipase activity and enanioselectivity.............................124 6-4 Substrate-assisted-catalysis on improving lipase performance............................125 Chapter 7 Future Works 7-1 Exploration of various plantlipases.......127 7-2 Dynamic kinetic resolution................127 7-3 Improvement of conversions................127 7-4 Verification of organo-baseeffects........128 7-5 Enhancement of lipase activity......................................128 References....................................130 Resume........................................140

    REFERENCES

    [1] Dixon M., Webb EC., Thorne CJR.,Tipton KF. 1979. Enzymes.
    New York Academic Press, 3rd ed. P. 1-6.
    [2] Drauz K., Waldmann H.1995. Enzyme Catalysis in Organic Synthesis, volume I, VCH, Weinheim.
    [3] Boyer PD., Krebs EG. 1970. The Enzymes. New York Academic Press, 3rd ed. P. 7-72.
    [4] IUB (International Union of Biochemistry and Molecular Biology) 1992. Enzyme
    Nomenclature: Recommendations, San Diego, Academic Press.
    [5] Bornschuer UT., Kazlauskas RJ. 2004. Catalytic Promiscuity in Biocatalysis: Using Old Enzymes to Form New Bonds and Follow New Pathways. Angew. Chem. Int Ed .43:6032-6040.
    [6] Mckee T., Mckee JR. 1999. Biochemistry. McGraw-Hill Companies, 2nd ed. P. 94-105.
    [7] Schmid A., Dordick JS., Hauer B., Kiener A., Wubbolts M., Witholt B. 2001. Industrial biocatalyst today and tomorrow. Nature 409:258-268.
    [8] Garcia R., Garcia T., Martinez M., Aracil J. 2000. Kinetic modeling of the synthesis of 2-hydroxy-5-hexenyl 2-chlorobutyrate ester by an immobilized lipase. Biochem.
    Eng. J. 5:185-190.
    [9] Peterson, D., Murray, H., Espstein, S., Reineke, L., Weintraub, A., Meister, P., Leigh, H. 1952. J. Am. Chem. Soc. 74:5933.
    [10] Tosa, T. 1966. Enzymologia. 31:214
    [11] Griffiths M: The application of biotechnology to industrial sustainability. Edited by
    Gram A., Treffenfeldt W., Lange U., Mclntyre T., Wolf O. Paris:OECD; 2001.
    [12] Schmid A., Hollmann F., Park JB., Buhler B. 2002. The use of enzymes in the chemical industry in Eurpoe. Current Opinion in Biotechnoloty 13:359-366.
    [13] Aires-Barros MR., Taipa MA., Cabral J. 1994. Isolation and purification of lipases. In: Wooley P, Petersib SB, editors, Lipases, their structure, biochemistry and application. Cambridge University Press. P. 243-270.
    [14] Sztafer H., Maliszewska I., Wierezorek J. 1988. Prodution of exogenous lipases by bacteria, funfi, and actinomycetes. Enzyme Microb. Technol. 10:492-497.
    [15] Miura T., Yamane T. 1997. Screening for fungi that have lipolytic and acidolyic activities in biomass support particles. Biosci. Biotechnol. Biochem. 168:181-189.
    [16] Tomizuka N., Ota Y., Yamada K. 1966. Studies on lipase from Candida cylindracea. Agric. Biol. Chem. 30:576-584.
    [17] Palocci C., Soro S., Cerica E., Fiorillo F., Belsito C.M.A., Monacelli B., Monache D., Pasqua G. 2003. Lipolytic isoenzymes from Euphorbia latex. Plant Sci. 165:577-582.
    [18] Sarda L., Desnuelle P. 1958. Action de la lipase pancreatique sur les esters an emulsion. Biochim. Biophys. Acta. 30:513-521.
    [19] Brady L., Brzozowski A.M., Derewenda Z.S., Dodson E., Dodson G., Tolley S., Turkenburg J.P., Christinsen L., Huge-Jensen B., Norskov L., Thim L., Menge U. 1990. A serine portease traid forms the catalytic centre of a triacylglycerol lipase. Nature 343:767-770.
    [20] Nieuwenhuis B. 1990. In the CEC Bridge Lipase Project (Eds.:Alberghina L., Schmid R.D., Verger R.), VCH, Weinheim. P.3-6.
    [21] Uppenberg J., Patkar M.T., Hansen S., Jones A.1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Canidia antarctica. Structure 2:293-308.
    [22] Jaeger K.E., Dijkstra B.W., Reetz R.T. 1999. Bacterial Biocatalyst: Molecular Biology, Three-Dimensional Structures, and Biotechnological Applications of Lipases. Annual Review of Microbial. 53:315-351.
    [23] Schmid R.D., Verger R.1998. Lipases: Interfacial Enzymes with Attractive Applications. Angew. Chem. Int. Ed. 37:1608-1633.
    [24] Stuer W., Jaeger K.E., Winkler U.K. 1986. Purification of extracellular lipase from Pseudomans aeruginosa. J. Bacterial. 168:1070-1074.
    [25] Pirozzi D., Jr Greco G. 2004. Activity and stability of lipases in the synthesis of butyl lactate. Enzyme Microb. Technol. 34:94-100.
    [26] Cheng Y.C., Tsai S.W. 2004. Enantioselective esterifcation of (R,S)-2-(4-chlorophenoxy)-proionic acid via Carica papaya lipase in organic solvents. Tetrahedron: Asymmetry. 15:2917-2920.
    [27] Cheng Y.C., Tsai S.W. 2003. Effects of water activity and alcohol concentration on the kinetic resolution of lipase-catalyzed acyl transfer in organic solvents. Enzyme Microb. Technol. 32:362-368.
    [28] Moussaoui A.E.I., Nijs M., Paul C., Wintjens R., Vincentelli J., Azarkan M., Looze Y. 2001. Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defense mechanism. CMLS, Cell. Mol. Life. Sci. 58:556-570.
    [29] Mitchel R.E.J., Chaiken I.M., Smith E.L. 1970. The complete amino acid sequence of papain: addition and corrections. J., Biol. Chem. 245:3485-3492.
    [30] Drenth J., Jansonius J.N., Koekoek R., Swen H.M., Wolthers B.G. 1968. Structure of papain. Nature. 218:929-932.
    [31] Mukherjee KD. Plant lipases in lipid biotransformation. 1995. In: Malcata FX, editor. Engineering of/with lipases. Dordrecht: Kluwer-Academic-Elsevier. P. 391-401.
    [32] Villeneuve P. Plant lipases and their applications in oils and fats modification. 2003. Eur. J. Lipid Sci. Technol. 105:308-317.
    [33] Dhuique-Mayer C., Caro Y., Pina M., Ruales J., Dornier M., Graille J. 2001. Biocatalytic properties of lipase in crude latex from Babaco fruit (Carica pentagona). Biotechnol. Lett. 23:1021-1024.
    [34] Palocci C., Soro S, Cerica E., Fiorillo F., Belsito C.M.A., Monacelli B, et al. 2003. Lipolytic isoenzymes form Euphorbia latex. Plant Sci. 165:577-582.
    [35] Srinivas N.R., Barbhaiya R.H., Midha K.K. 2001. Enantiomeric drug development: issues, considerations, and regulatory requirements. J. Pharm. Sci. 90:1205-1215.
    [36] Lee E.G., Won H.S., Chung B.H., Enantioselective hydrolysis of racemic naproxen methyl ester by two-step acetone-treated Candida rugosa lipase. Process Biochem. 37:293-298.
    [37] Lee E.G., Won H.S., Ro H.S., Ryu Y.W., Chung B.H. 2003. Preparation of enantiomercially pure (S)-flubiprofen by an esterase from Pseudomonas sp. KCTC 10122BP. J. Mol. Catal. B: Enzym. 26:149-156.
    [38] Chen J.C., Tsai S.W. 2000. Enantioselective Synthesis of (S)-Ibuprofen Ester Prodrug in Cyclohexane by Candida rugoas Lipase Immobilized on Accurel MP1000. Biotechnol. Prog. 16:986-992.
    [39] Ghanem A., Aboul-Enein H.Y. 2005. Application of Lipases in Kinetic Resolution of Racemates. Chirality. 17:1-15.
    [40] Sheldon R.A. 1993. Chirotechnology: industrial synthesis of optically active compounds. New York: Marcel Dekker.
    [41] Eliel E.L., Wilken S.H., Mander L.N. 1994. Stereochemistry of organic compounds. New York: John Wiley & Sons.
    [42] Prelog V. 1964. Specification of the sterospecificity of some oxidoreductases by diamoud lattice sections. Pure Appl. Chem. 9:9
    [43] Lee T., Sakowicz R., Martichonoc V., Hogan J.K., Gold M., Jones J.B. 1996. Probing enzyme specificity. Acta. Chem. Scand. 50:697-706.
    [44] Kazlauskas R.J., Weissfloch A.N.E., Rappaport A.T., Cuccia L.A. 1991. A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase form Pseudomonas cepacia and lipase from Candida rugosa. J. Org. Chem. 56:2656-2665.
    [45] Sih C.J., Wu S.H. 1989. Resolution of enantiomers via biocatalysis. Top Sterochem. 19:63-125.
    [46] Drauz K., Waldmann H. 1995. Enzyme catalysis in organic synthesis. Weinhem: Wiley-VCH.
    [47] Chen C.S., Fujimoto Y., Girdaukas G., Sih C.J. 1982. Quantitative Analysis of Biochemical Kinetic Resolution of Enantiomers. J. Am. Chem. Soc. 104:7294-7299.
    [48] Patel R.N. 2000. Steroselective biocatalysis. Marcel Dekker, New York.
    [49] Michaelis L., Menten M.L. 1913. Biochem. Z. 49:333.
    [50] Fite M., Alvaro G., Clapes P., Santin L.J., Benaiges M.D., Caminal G. 1998. Reactivity of easily removable protecting groups for glycine in peptide synthesis using papain as catalyst. Enzyme Microb. Technol. 23:199-203.
    [51] Zhang X.Z., Wang X., Chen S., Fu X., Wu X., Li C. 1996. Protease-catalyzed small peptide synthesis in organic media. Enzyme Microb. Technol. 19:538-544.
    [52] Mizayawa T. 1999. Enzymatic resolution of amino acid via ester hydrolysis. Biocatal. Biotrans. 16:191-213.
    [53] Cantacuzene D., Guerreiro C., Attal S. 1989. Influence of hydrophobic amino acid residues on the esterification of dipeptids by papain. Biotechnol. Lett. 11:493-498.
    [54] Tai D.F., Fu S.L., Chuang S.F., Tsai H. 1989. Papain catalyzed esterification in polar organic solvents. Biotechnol. Lett. 11:173-176.
    [55] Villeneuve P., Pina M., Montet D., Graille J. 1995. Carica papaya latex lipase : sn-3 stereoselectivity or short-chain selectivity ? Model chiral triglycerides are removing the ambiguity. J. Am. Oil. Chem. 72:753-755.
    [56] Weissfloch. A.N.E., Kazlauskas R.J. 1995. Enantiopreference of Lipase from Pseudomonas cepacia toward Primary Alcohols. J. Org. Chem. 60:6959-6069.
    [57] Lemke. K., Lemke M., Theil F. 1997. A Three-Dimensional Predictive Active Site Model for Lipase from Pseudomonas cepacia. J. Org. Chem. 62:6268-6273.
    [58] Koskinen A.M.P., Klibanov A.M. (Eds.) 1996. Enzymatic Reactions in Organic Media; Blackie: Glasgow.
    [59] Parker M.C., Brown S.A., Robertson L., Turner N.J. 1998. Enhancement of Candida antarctica lipase B enantioselectivity and activity in organic solvents. Chem. Commun. 2247-2248.
    [60] Boaz N.W., Zimmerman R.L. 1994. Amine Assisted Enzymatic Esterification of 1,2-Diol Monotosylates. Tetrahedron: Asymmetry. 5:153-156.
    [61] Berger B., Rabiller C.G., Konigsberger K., Faber K., Griengl H. 1990. Enzymatic acylation using acid anhydrides: Crucial removal of acid. Tetrahedron: Asymmetry. 1:541-546.
    [62] Stead P., Marley H., Mahmoudian M., Webb G., Noble D., Ip Y.T., Piga E., Rossi T., Roberts S.M., Dawson M.J. 1996. Efficient procedures for the large-scale preparation of (1S,2S)-trans-2-methoxycyclohexanol, a key chiral intermediate in the synthesis of tricyclic β-lactam antibiotics. Tetrahedron: Asymmetry. 7:2247-2250.
    [63] Quiros M., Parker M.C., Turner N.J. 2001. Tuning Lipase Enantioselectivity in Organic Media Usin Solid-State Buffers. J. Org. Chem. 66:5074-5079.
    [64] Takashi O., Shinichi U. 1999. Drastic enhancement of the enantioselectivity of lipase-catalyzed esterification in organic solvents by the addition of metal ions. Chem. Commun. 939-940.
    [65] Guo Z.W., Sih C.J. 1989. Enantioselective Inhibition: A Strategy for Improving the Enantioselectivity of Biocatalytic Systems. J. Am. Chem. Soc.111:6836-6841.
    [66] Rakels J.L.L., Straathof A.J.J., Heijnen J.J. 1994. Improvement of enantioselective enzymatic ester hydrolysis in organic solvents. Tetrahedron: Asymmetry. 5:93-100.
    [67] Itoh T., Takagi Y., Murakami T., Hiyama Y., Tsukube H. 1996. Crown Ethers as Regulators of Enzymatic Reactions: Enhanced Reaction Rate and Enantioselectivity in Lipase-Catalyzed Hydrolysis of 2-Cyano-1-methylethyl Acetate. J. Org. Chem. 61:2158-2163.
    [68] Itoh T., Mitsukura K., Kanphai W., Takagi Y., Teramoto J., Kihara H., Tsukube H. 1997. Thiacrown Ether Technology in Lipase-Catalyzed Reaction: Scope and Limitation for Preparing Optically Active 3-Hydroxyalkanenitriles and Application to Insect Pheromone Synthesis. J. Org. Chem. 62:9165-9172.
    [69] Holmberg E., Holmquist M., Hedenstrom E., Berglund P., Norin T., Hogberg H.E. 1991. Reaction conditions for the resolution of 2-methylalkanoic acids in esterification and hydrolysis with lipase from Candida cylindracea. Appl. Microbial Biotechnol. 35:572-578.
    [70] Tsukbe H., Betchaku A., Hiyama Y., Itoh T. 1994. Lipase-Catalyzed Hydrolysis of Crowned Ester Substrates: Metal Cation-Enhanced Reactivity and Enantioselectivity of 12-Crown-4 Ester. J. Org. Chem. 59:7014-7018.
    [71] Lin G., Lin W.Y., Shieh C.T. 1998. The Enhancement of Enantioselectivities for Lipase-Catalyzed Reactions by Using Carbamates. Tetrahedron Lett. 39:8881-8884.
    [72] Carter P., Wells J.A. 1987. Enginering Enzyme Specificity by ”Substrate-Assisted Catalysis”. Science. 237:394-399.
    [73] Magnusson A., Hult K., Holmquist M. 2001. Creation of an Enantioselectivity Hydrolase by Engineered Substrate-Assisted Catalysis. J. Am. Chem. Soc. 123:4354-4355.
    [74] Wang Q., Withers S.G. 1995. Substrate-Assisted Catalysis. J. Am. Chem. Soc. 117: 10137-10138.
    [75] Holmquist M., Berglund P. 1999. Creation of a Synthetically Useful Lipase with Higher Than Wild-Type Enantioselectivity and Maintained Catalytic Activity. Org. Lett. 1:763-765.
    [76] Bornscheuer U.T., Altenbuchner J., Meyer H.H. 1998. Directed Evolution of an Esterase for the Steroselective Resolution of a Key Intermediate in the Synthesis of Epothilones. Biotechnol. Bioeng. 58:554-559.
    [77] Tuomi W.V., Kazlauskas R.J. 1999. Molecular Basis for Enantioselectivity of Lipase from Pseudomonas cepacia toward Primary Alcohols. Modeling, Kinetic, and Chemical Modification of Tyr29 to Increase or Decrease Enantioselectivity. J. Org. Chem. 64:2638-2647.
    [78] Karlauskas R.J., Bornscheuer U.T. 1998. Biotransformations I. In: Rehm H.J., Reed G., Puehler A., Stadler P, editors. Biotechnologies-series, vol. 8a. Weinheim: Wilet-VCH. P. 37-191.
    [79] Faber K. 2000. Biotransformations in organic chemistry. 4th ed. Berlin: Springer-Verlag.
    [80] Baumann M., Hauer BH., Bornscheuer U.T. 2000. Rapid screening of hydrolases for the enantioselective conversion of “difficult-to-resolve” substrates. Tetrahedron: Asymmetry. 11:4781-4790.
    [81] Cardenas F., de Castro M.S., Sanchez-Montero J.M., Sinisterra J.V., Valmaseda M., Elson S.W., et al. 2001. Novel microbial lipases : catalytic activity in reactions in organic media. Enzyme Microb. Technol. 28:145-154.
    [82] Kilcawley K.N., Wilkinson M.G., Fox P.F. 2002. Determination of key enzyme activities in commercial peptidase and lipase preparations from microbial or animal sources. Enzyme Microb. Technol. 31:310-320.
    [83] Steenkamp L., Brady D. 2003. Screening of commercial enzymes for the enantioselectivity hydrolysis of (R,S)-naproxen ester. Enzyme Microb. Technol. 32:427-477.
    [84] Colton I.J., Ahmed S.N., Karzlauskas R.J. 1995. A 2-propanol treatment increases the enantioselectivity of Candida rugosa lipase toward esters of chiral carboxylic acids. J. Org. Chem. 60:212-217.
    [85] Lalonde J.J., Govardhan C., Khalaf N., Martinez A.G., Visuri K., Margolin A.L. 1995. Cross-linked crystals of Candida rugosa lipase: high efficient catalyst for the resolution of chiral esters. J. Am. Chem. Soc. 117:6845-6852.
    [86] Beisson F., Tiss A., Riviere C., Verger R. 2000. Methods for lipase detection and assay: a critical review. Eur. J. Lipid. Sci. Technol. 102:133-153.
    [87] Gupta R., Rathi P., Gupta N., Bradoo S. 2003. Lipase assays for conventional and molecular screening: an overview. Biotehcnol. Appl. Biochem. 37:67-71.
    [88] Lin H.Y., Tsai S.W. 2003. Dynamic kinetic resolution of (R,S)-naproxen 2,2,2-trifluoroehtyl ester via lipase-catalyzed hydrolysis in microaqueous isooctane. J. Mol. Catal. B: Enzym. 24-25:111-120.
    [89] Caro Y., Villeneuve P., Pina M., Reynes M., Graille J. 2000. Lipases activity and fatty acid typoselectivities of plant extracts in hydrolysis and interesterification. J. Am. Oil. Chem. Soc. 77:349-354.
    [90] Caro Y., Villeneuve P., Pina M., Reynes M., Graille J. 2000. Investigation of crude latex from various Carica papaya varieties of lipid bioconversions. J. Am. Oil. Chem. Soc. 77:891-901.
    [91] Azarkan M, Moussaoui A.E.I., van Wuytswinkel D., Dehon G., Looza Y. 2003. Fractionation and purification of the enzymes stored in the latex of Carica papaya. J. Chromatogr. B. 790:229-238.
    [92] Reichart C. 1990. Solvents and Solvent Effects in Organic Chemistry. Weinheim, Wiely-VCH. 2nd ed.
    [93] Sakurai T., Margolin A.L., Russell A.J., Klibanov A.M. 1998. Control of Enzyme Enantioselectivity by the Reaction Medium. J. Am. Chem. Soc. 110:7236-7237.
    [94] Ottosson J., Fransson L., King J.W., Hult K. 2002. Size as a parameter for solvent effects on Candida Antarctica lipase B enantioselectivity. Biochim. Biophys. Acta. 1594:325-334.
    [95] Moulin A., Teissere M., Bernard C., Pieroni G. 1994. Lipase of the Euphorbiaceae family: Purification of a lipase from Euphorbia characias latex and structure-function relationships with the B chain of ricin. Proc. Natl. Acad. Sci. USA 91:11328-11332.
    [96] Ng I.S., Tsai S.W. 2005. Effects of Carica papaya lipase Pretreatments on Enantioselective Hydrolysis of (R,S)-Arylpropionic Thioesters. J. Chin. Inst. Chem. Engrs. 36:331-337.
    [97] Phillipas R.S. 1996. Temperature modulation of the stereochemistry of enzymatic catalysis: Prospects for exploitation. Trends Biotechnol. 14:13-16.
    [98] Wang L.W., Cheng Y.C., Tsai S.W. 2004. Process modeling of the lipase-catalyzed dynamic kinetic resolution of (R,S)-suprofen 2,2,2-trifluoroethyl thioester in a hollow-fiber membrane. Bioprocess and Biosystem Engineering. 27:39-49.
    [99] Lu C.S., Cheng Y.C., Tsai S.W. 2002. Integration of reactive membrane extraction with lipase-hydrolysis dynamic kinetic resolution of naproxen 2,2,2-trifluoroethyl thioester in isooctane. Biotechnol. Bioeng. 79:200-210.
    [100] Pham V.T., Phillips R.S., Ljungdahl L.G. 1989. Temperature-dependent enantiospecificity of secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus. J. Am. Chem. Soc. 111:1935-1936.
    [101] Pham V.T., Phillips R.S. 1990. Effects of substrate structure and temperature on the stereospecificity of secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus. J. Am. Chem. Soc. 112:3629-3632.
    [102] Phillips R.S. 1996. Temperature modulation of the stereochemistry of enzymatic catalysis: prospects for exploitation. Trends. Biotechnol 14:13-16.
    [103] Ottosson J., Hult K. 2001. Influence of acyl chain length on the enantioselectivity of Candida antarctica lipase B and its thermodynamic components in kinetic resolution of sec-alcohols. J. Mol. Catal. B: Enzym. 11:1025-1028.
    [104] Lopez-Serrano P., Wegman M.A., van Rantwijk F., Sehldon R.A. 2001. Enantioselective enzyme catalyzed ammoniolysis of amino acid derivates: Effect of temperature. Tetrahedron: Asymmetry 12:235-240.
    [105] Ema T. 2004. Mechanism of Enantioselectivity of Lipases and Other Synthetically Useful Hydrolases. Curr. Org. Chem. 8:1009-1025.
    [106] Ng I.S., Tsai S.W. 2005. Hydrolytic Resolution of (R,S)-Naproxen 2,2,2-Trifluoroethyl Thioester by Carica papaya Lipase in Water-Saturated Organic Solvents. Biotechnol. Bioeng. 89:88-95.
    [107] Tsai S.W., Wei H.J. 1994. Enantioselective esterification of racemic naproxen by lipases in organic solvent. Enzyme Microb. Technol. 16:328-333.
    [108] Ng I.S., Tsai S.W. 2005. Partially Purified Carica papaya Lipase: a Versatile Biocatalyst for the Hydrolytic Resolution of (R,S)-2-Arylpropinoic Thioesters in Water-Saturated Organic Solvents. Biotechnol. Bioeng. 91:106-113.
    [109] Dodson G., Wlodawer A. 1998. Catalytic triads and their relatives. Trends Biochem. Sci. 23:347-352.
    [110] Bocola M., Stubbs N.T., Sotriffer C., Hauer B., Friedrich T.F., Dittrch K., Klebe G. 2003. Structural and energetic determinants for enantiopreferences in kinetic resolution of lipases, Protein. Eng. 16:319-322.
    [111] Botta M., Corelli F., Manetti F., Tafi A. 2002. Molecular modeling as a powerful technique for understanding small-large molecules interactions. Farmaco. 57:153-165.
    [112] Fujii R., Nakagawa Y., Hiratake J., Sogabe A., Sakata K. 2005. Directed evolution of Pesudomonas aerginosa lipase for improved amide-hydrolyzing activity. Protein. Eng. Des. Sel. 18:93-101.
    [113] Hirohara H., Nishizawa M. 1998. Biochemical synthesis of several chiral insecticide intermediates and mechanisms of action of relevant enzymes. Biosci. Biotechnol. Biochem. 62:1-9.
    [114] Case A., Stein R. 2003. Mechanistic origins of the substrate selectivity of serine protease. Biochemistry. 42:3335-3348.
    [115] Ishida T., Kato S. 2003. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. J. Am. Chem. Soc. 125:12035-12048.
    [116] Bott R.R., Chan G., Domingo B., Ganshaw G., Hsia C.Y., Knapp M., Murray C.J. 2003. Do enzymes change the nature of transition state? Mapping the transition state for general acid-base catalysis of a serine protease. Biochemistry. 42:10545-10553.
    [117] Cygler M., Grochulski P., Kazlauskas R.J., Schrag J.D., Bouthillier F., Rubin B., Serreqi A.N., Gupta A.K. 1994. Molecular basis for the chiral preference of lipases. J. Am. Chem. Soc. 116:3180-3186.
    [118] Heffer F., Norin T. 1999. Molecular modeling of lipase catalyzed reactions. Prediction of enantioselectivities. Chem. Pharm. Bull. 47:591-600.
    [119] Nishizawa K., Ohgami Y., Matsuo N., Kisida H., Hirohara H. 1997. Studies on hydrolysis of chiral, achiral an racemic alcohol esters with Pseudomonas cepacia lipase: mechanism of stereospecificity of the enzyme. J. Chem. Soc. Perkin. Trans. 226:1293-1298.
    [120] Antczak T., Graczyk J., Szczesna-Antczak M., Bielecki S. 2002. Activation of Mucor circinelloides lipase in organic medium. J. Mol. Catal. B: Enzym. 19-20:287-294.
    [121] Aoyagi Y., Saitoh Y., Ueno T., Horiguchi M., Takeya K. 2003. Lipase TL-mediated kinetic resolution of 5-benzyloxy-1-tert-butyldimethylsilyloxy-2-pentanol at low temperature: concise asymmetric synthesis of both enantiomers of a piprerazic acid derivative. J. Org. Chem. 68:6899-6904.
    [122] Lee M-Y./ Dordick J.S. 2002. Enzyme activation for nonaqueous media. Curr. Opin. Biotechnol. 13:376-384.
    [123] Theil F., Weidner J., Ballschuh S., Kunath A., Schick H. 1994. Kinetic resolution of acylic 1,2-diols using a sequential lipase-catalyzed transesterification in organic solvents. J. Org. Chem. 59:388-393.
    [124] Theil F. 2000. Enhancement of selectivity and reactivity of lipases by additives. Tetrahdron. 56:2905-2919.
    [125] Chang C.S., Tsai S.W., Kuo J. 1999. Lipase-catalyzed dynamic resolution of naproxen 2,2,2-trifluoroethyl thioeser by hydrolysis in isooctane. Biotechnol. Bioeng. 64:120-126.
    [126] Chen C.Y., Cheng Y.C., Tsai S.W. 2002. Lipase-catalyzed dynamic kinetic resolution of (R,S)-fenoprofen thioester in isooctane. J. Chem. Technol. Biotechnol. 77:699-705.
    [127] Graton J., Besseau F., Berthelot M., Laurence EDRC. 2002. The pK(HB) scale for hydrogen bonds in aliphatic tertiary amines. Can. J. Chem. 80:1375-1385.
    [128] Marquis E., Graton J., Berthelot M., Laurence APC. 2004. Hydrogen body of arylamines : Competition wiht pi and N sites. Can. J. Chem. 82:1413-1422.
    [129] Scriven E.F. 1983. 4-Dialkylaminopyridines: super acylation and alkylation catalysis. Chem. Soc. Rev. 12:129-161.
    [130] Hofle G., Steglich W., Vorbruggen H. 1978. 4-Dialkylaminopyridines as highly active acylation acatylasis. Angew. Chem. Int. Ed. Engl. 17:569-583.
    [131] Perrin D.D. 1972. Dissociation Constants of Organic Bases in Aqueous Solutions: Supplement. London: Butterworths.
    [132] Spivey A.C., Arseniyadis S. 2004. Nucleophilic catalysis by 4-(dialkylamino) pyridines revisitd- the search for optimal reactivity and selectivity. Angew. Chem. Int. Ed. 43:5436-5441.
    [133] Bachovchin W.W. 2001. Contributions of NMR spectroscopy to the study of hydrogen bonds in serine protease active sites. Magn. Reson. Chem. 39:S199-S213.
    [134] Frey P.A. 2004. Strong hydrogen bonding in chymotrypsin and other serine proteases. J. Phy. Org. Chem. 17:511-520.
    [135] Hansch C., Leo L., Taft R.W. 1991. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91:165-195.
    [136] Vasudevan D., Dorley P.J., Zhuang X. 2001. Adsorption of Hydroxy Pyridines and Quinolines at the Metal Oxide-Water Interface: Role of Tautomeric Equilibrium. Environ. Sci. Technol. 35:2006-2013.
    [137] Takahashi S., Cohen L.A., Miller H.K., Peake E.G. 1971. Calculation of the pKa values of alcohols from .sigma. constants and from the carbonyl frequencies of their esters. J. Org. Chem. 36:1205-1209.

    下載圖示 校內:立即公開
    校外:2006-06-30公開
    QR CODE