| 研究生: |
陳建瑆 Chen, Chien-Hsing |
|---|---|
| 論文名稱: |
基於深度學習技術於球型果乾外觀檢測系統 Spherical Dried Fruit Detection System based on Deep Learning |
| 指導教授: |
楊竹星
Yang, Chu-Sing |
| 共同指導教授: |
謝錫堃
Shieh, Ce-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 機器學習 、深度學習 、XGBoost 、YOLOv7 |
| 外文關鍵詞: | Machine Learning, Deep Learning, XGBoost, YOLOv7 |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] 薛吉人, 王婉伶, 張哲瑋, and 蔡智賢, “台灣龍眼果實性狀評估與分類,” 台灣農業研究, vol. 60, no. 4, pp. 318–327, Dec. 2011, doi: 10.6156/JTAR/2011.06004.08.
[2] 周書立 and 張嵐雁, “龍眼栽培與利用,” 臺南區農業專訊, no. 108, pp. 1–8, Jun. 2019, doi: 10.29557/YYWYLL.
[3] T. Pholpho, S. Pathaveerat, and P. Sirisomboon, “Classification of longan fruit bruising using visible spectroscopy,” J Food Eng, vol. 104, no. 1, pp. 169–172, May 2011, doi: 10.1016/J.JFOODENG.2010.12.011.
[4] A. Pratondo and A. Novianty, “Classification of Longan Edibility using Machine Learning,” APICS 2022 - 2022 1st International Conference on Smart Technology, Applied Informatics, and Engineering, Proceedings, pp. 108–112, 2022, doi: 10.1109/APICS56469.2022.9918746.
[5] L. Zhou, C. Zhang, F. Liu, Z. Qiu, and Y. He, “Application of Deep Learning in Food: A Review,” Compr Rev Food Sci Food Saf, vol. 18, no. 6, pp. 1793–1811, Nov. 2019, doi: 10.1111/1541-4337.12492.
[6] N. Mamat, M. F. Othman, R. Abdoulghafor, S. B. Belhaouari, N. Mamat, and S. F. Mohd Hussein, “Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review,” Agriculture, vol. 12, no. 7, p. 1033, Jul. 2022, doi: 10.3390/AGRICULTURE12071033.
[7] Y. Fu et al., “A novel non-destructive detection of deteriorative dried longan fruits using machine learning algorithms based on low field nuclear magnetic resonance,” Journal of Food Measurement and Characterization, vol. 16, no. 1, pp. 652–661, Feb. 2022, doi: 10.1007/S11694-021-01190-4/METRICS.
[8] R. T. Chin and C. A. Harlow, “Automated Visual Inspection: A Survey,” IEEE Trans Pattern Anal Mach Intell, vol. PAMI-4, no. 6, pp. 557–573, 1982, doi: 10.1109/TPAMI.1982.4767309.
[9] R. T. Chin, “Automated visual inspection: 1981 to 1987,” Comput Vis Graph Image Process, vol. 41, no. 3, pp. 346–381, Mar. 1988, doi: 10.1016/0734-189X(88)90108-9.
[10] V. N. Vapnik and A. Ya. Lerner, “Pattern Recognition Using Generalized Portrait Method,” Automation and Remote Control, vol. 24, no. 6, pp. 774–780, 1963.
[11] C. Cortes, V. Vapnik, and L. Saitta, “Support-vector networks,” Mach Learn, vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
[12] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and regression trees,” Wadsworth Inc., 1984, doi: 10.1201/9781315139470.
[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2323, 1998, doi: 10.1109/5.726791.
[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778, Dec. 2015, doi: 10.1109/CVPR.2016.90.
[15] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” 36th International Conference on Machine Learning (ICML), vol. 2019-June, pp. 10691–10700, 2019.
[16] M. Tan and Q. V. Le, “EfficientNetV2: Smaller Models and Faster Training,” International Conference on Machine Learning, pp. 10096–10106, Apr. 2021.
[17] K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, “A survey of transfer learning,” J Big Data, vol. 3, no. 1, pp. 1–40, Dec. 2016, doi: 10.1186/S40537-016-0043-6/TABLES/6.
[18] F. Zhuang et al., “A Comprehensive Survey on Transfer Learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, Nov. 2019, doi: 10.1109/JPROC.2020.3004555.
[19] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and A. W. M. Smeulders, “Selective search for object recognition,” Int J Comput Vis, vol. 104, no. 2, pp. 154–171, Sep. 2013, doi: 10.1007/S11263-013-0620-5/FIGURES/9.
[20] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 580–587, Nov. 2013, doi: 10.1109/CVPR.2014.81.
[21] R. Girshick, “Fast R-CNN,” Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448, Apr. 2015, doi: 10.1109/ICCV.2015.169.
[22] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 39, no. 6, pp. 1137–1149, Jun. 2015, doi: 10.1109/TPAMI.2016.2577031.
[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 779–788, Jun. 2015, doi: 10.1109/CVPR.2016.91.
[24] W. Liu et al., “SSD: Single Shot MultiBox Detector,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9905 LNCS, pp. 21–37, Dec. 2015, doi: 10.1007/978-3-319-46448-0_2.
[25] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation of the state of the art,” IEEE Trans Pattern Anal Mach Intell, vol. 34, no. 4, pp. 743–761, 2012, doi: 10.1109/TPAMI.2011.155.
[26] K. K. Sung and T. Poggio, “Example-based learning for view-based human face detection,” IEEE Trans Pattern Anal Mach Intell, vol. 20, no. 1, pp. 39–51, 1998, doi: 10.1109/34.655648.
[27] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object detection network for autonomous driving,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6526–6534, Nov. 2017, doi: 10.1109/CVPR.2017.691.
[28] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv preprint arXiv:1804.02767, Apr. 2018.
[29] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature Pyramid Networks for Object Detection,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125, 2017.
[30] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv preprint arXiv:2004.10934, 2020.
[31] C. Y. Wang, H. Y. Mark Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, and I. H. Yeh, “CSPNet: A New Backbone that can Enhance Learning Capability of CNN,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 390–391, 2020, doi: 10.1109/CVPRW50498.2020.00203.
[32] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8691 LNCS, no. PART 3, pp. 346–361, Jun. 2014, doi: 10.1007/978-3-319-10578-9_23.
[33] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path Aggregation Network for Instance Segmentation,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 8759–8768, 2018.
[34] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, Mar. 2016, doi: 10.1145/2939672.2939785.
[35] J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Ann Stat, vol. 29, no. 5, pp. 1189–1232, 2001, doi: 10.1214/aos/1013203451.
[36] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7464–7475, 2023.
[37] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning,” Neural Networks, vol. 107, pp. 3–11, Feb. 2017, doi: 10.1016/j.neunet.2017.12.012.
[38] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “RepVGG: Making VGG-style ConvNets Great Again,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 13728–13737, Jan. 2021, doi: 10.1109/CVPR46437.2021.01352.
校內:2028-08-01公開