簡易檢索 / 詳目顯示

研究生: 張雅晴
Chang, Ya-Ching
論文名稱: 硫醇鍵修飾的異丙基丙烯醯胺與幾丁聚醣之可注射型的溫敏感性水膠在兔膝蓋關節炎模型的軟骨缺損修復應用
Injectable thermo-sensitive thiol-modified NIPAAm-g-chitosan hydrogels for cartilage regeneration in rabbit osteoarthritis model
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 68
中文關鍵詞: 溫感型水凝膠碘乙酸鈉誘發的骨關節炎骨關節炎動物模型軟骨再生依那西普
外文關鍵詞: Thermo-sensitive hydrogel, MIA-induced osteoarthritis, OA animal model, Cartilage regeneration, Etanercept
相關次數: 點閱:157下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於關節軟骨其自我修復能力不足,軟骨修復方式是一大熱門研究主題,但目前臨床的相關手術方式仍存在一些缺點需要解決,因此科學家們提出組織工程來作為軟骨缺損修復的潛力療法,期望能製備可改善或恢復受損組織功能的仿生組織。在材料方面,根據先前研究指出經由硫醇鍵修飾的異丙基丙烯醯胺與幾丁聚醣共聚物水凝膠具有溫感性、可注射性、良好的生物相容性以及透過雙硫共價鍵交聯增強的機械性質,這些特性使其極有潛力作為軟骨修復應用的支架材料。
    在大部分的研究中,骨軟骨缺損再生的評估通常於健康動物中進行,不過根據臨床調查指出關節軟骨缺損若無追蹤治療,未來可能演變成骨關節炎(OA),另一調查亦指出骨軟骨缺損通常由嚴重的外力創傷和身體疾病(例如關節炎)引起,根據統計,到2012年美國約有3100萬人患有骨關節炎,其中有9.2%的病患具有骨軟骨缺損,因此骨軟骨缺損與骨關節炎之間具有強烈的關聯性。
    在本研究中我們想評估硫醇鍵修飾的異丙基丙烯醯胺與幾丁聚醣共聚物水凝膠結合具軟骨分化潛力的人類脂肪間質幹細胞,在碘乙酸鈉(MIA)藥物誘導的骨關節炎兔子模型中的軟骨再生能力,並討論添加依那西普(一種TNF-α抑製劑)對結果的影響。
    我們首先成功合成了硫醇鍵修飾的異丙基丙烯醯胺與幾丁聚醣共聚物水凝膠,透過熱掃描卡量計(DSC)證實其具有合適的低臨界溶液溫度(LCST):約31℃,此特性使其成為一可注射型的生醫材料,注入後能於原缺損位置快速由液狀變為膠狀;掃描式電子顯微鏡(SEM)亦發現水膠內部具有多孔的微結構,可使細胞貼附以及養分輸送;由雙硫共價鍵交聯增強的機械性質則透過迴旋式流變分析儀(Rheometer)進行驗證,最後再以CCK8試劑組證實此水膠不具備細胞毒性,可用於後續的體內試驗。
    我們採用碘乙酸鈉(MIA)藥物誘導的方式於兔子膝關節中建立骨關節炎模型,並透過組織學染色以及IL-1β、IL-6、TNF-α細胞因子檢測討論其與正常動物模型的區別。最後再於此動物模型中進行骨軟骨缺損修復能力評估,根據宏觀觀察、微電腦斷層掃描儀(micro-CT)以及組織學染色分析,我們發現與空缺損組相比,含間質幹細胞的水凝膠組別皆於軟骨修復能力上具有顯著提升,而添加依那西普的組別於四周時較其他組有良好的修復表現,於十二周時則無顯著差異。
    根據先前描述的結果,我們成功以碘乙酸鈉(MIA)藥物誘導的方式建立骨關節炎模型,並認為硫醇鍵修飾之異丙基丙烯醯胺與幾丁聚醣共聚物水凝膠結合具軟骨分化潛力之幹細胞具有極佳的潛力應用於軟骨組織工程中,此研究亦證實其於骨關節炎環境仍能表現良好的軟骨修復能力。

    The self-healing ability of cartilage tissue is limited so that the cartilage repair methods have been extensively studied for decades, yet, there are still some shortages and limitations needed to be resolved. Tissue engineering is an emerging research field, which is committed to the formation of biomimetic tissues that improve or restore the function of damaged tissues. For scaffold, the previous study reported that thiol-modified NIPPAm-g-chitosan hydrogel, with thermo-sensitive, injectable, good biocompatibility, and enhancing mechanical properties by disulfide covalent bond crosslinking, is considered a suitable scaffold for the application of cartilage repair.
    In most studies, evaluations of osteochondral regenerative were usually performed in healthy animals. However, traumatic defects of articular cartilage may eventually result in osteoarthritis (OA) if patients are in delay of treatment. Another survey showed that osteochondral defects are usually caused by severe traumas and physical diseases such as OA. According to reports, by 2012, approximately 31 million Americans suffered from OA, of which 9.2% had osteochondral defects. There seems to be a strong relationship between cartilage defect and OA.
    Therefore, in this study, we want to evaluate the effect of thiol-modified NIPAAm-g-chitosan (TNC) hydrogels containing human adipose-derived mesenchymal stem cells with or without etanercept, a TNF-α inhibitor, for cartilage regeneration in the monosodium iodoacetate (MIA)-induced OA rabbit model.
    We first successfully synthesized TNC hydrogels with suitable lower critical solution temperature (LCST), at about 31℃, confirmed by DSC. And the porous interior microstructures were showed in SEM images. The enhancing mechanical properties were tested by rheometer. Finally, we used the CCK8 kit to confirm that there was non-cytotoxicity of this hydrogel for further in vivo analysis.
    The OA rabbit models were established by MIA-induced rabbit knee joints, with verification of histology staining and cytokine detection of IL-1β, IL-6, and TNF-α, which were increasing in OA. And the evaluations of osteochondral regeneration were performed in these OA models. Macroscopic evaluations, micro-CT analysis, and histological and immunohistochemical staining results showed that compared with empty defect groups, the cell-seeded hydrogel groups improved the cartilage regeneration, and the etanercept effectively promoted osteochondral defects repair in the first 4 weeks.
    Based on the previously described results, we have successfully established MIA-induced OA models and considered that the TNC hydrogels containing chondrogenic potential stem cells could be expected for cartilage tissue engineering, which was also proven in OA models of this study.

    中文摘要 I Abstract III 誌謝 V Table of Contents VII Table of Figures X List of Table XII Chapter 1: Introduction 1 1.1 Biology and Composition of Articular Cartilage 1 1.2 Articular Cartilage Defects and Osteoarthritis 3 1.3 Animal Osteoarthritis Model 4 1.4 Clinical Treatments for Articular Cartilage Defects 5 1.5 Tissue Engineering 7 1.5.1 Cell Source: Human Adipose-derived Mesenchymal Stem Cells 7 1.5.2 Biomaterials Scaffolds: Thiol-modified NIPPAm-g-chitosan (TNC) 8 1.5.2.1 Poly (N-isopropyl acrylamide) 9 1.5.2.2 Chitosan 10 1.5.2.3 Disulfide covalent bond crosslinking 10 1.6 Signaling molecules: Etanercept (Tumor necrosis factor inhibitor) 11 1.7 Motivation and Aim 12 Chapter 2: Materials and Methods 14 2.1 Flow Chart 14 2.2 Instruments & Consumables 14 2.3 Materials 16 2.4 Synthesis of NIPAAm-g-Chitosan Hydrogels (NC) 17 2.5 Synthesis of Thiol-modified NIPAAm-g-Chitosan Hydrogels (TNC) 18 2.6 Characterization of NC and TNC Hydrogels 19 2.6.1 Chemical Structure (FTIR and 1H NMR) 19 2.6.2 Sol-gel Temperature 19 2.6.3 Microstructure Characterization 19 2.6.4 Rheological Characterization 20 2.7 In vitro Analysis of NC and TNC Hydrogels 20 2.7.1 Culture of Human Adipose-Derived Mesenchymal Stem Cells 20 2.7.2 Cell Viability 21 2.8 In vivo New Zealand White Rabbits Osteoarthritis Animal Models 21 2.8.1 Ethics Statement 21 2.8.2 Animal Surgical Procedure 21 2.8.3 Verification of OA Model (Macroscopic and Histological Examinations) 24 2.8.4 Verification of OA Model (Proinflammatory Cytokines Detection) 26 2.8.5 Regeneration of Osteochondral Defect 26 2.8.5.1 Macroscopic Evaluations 26 2.8.5.2 Micro-CT Analysis 27 2.8.5.3 Histological and Immunohistochemical Analysis 27 2.9 Statistical Analysis 29 Chapter 3: Results 30 3.1 Synthesis and Modification of NIPAAm-g-Chitosan Hydrogels 30 3.2 Characterization of NC and TNC Hydrogels 31 3.2.1 Chemical Structure Analysis 31 3.2.2 Lower Critical Solution Temperature (LCST) 33 3.2.3 Microenvironment of Hydrogels 34 3.2.4 Rheological Behavior 35 3.3 In vitro Analysis of NC and TNC Hydrogels 36 3.3.1 Cell Viability 36 3.4 In vivo Analysis in New Zealand White Rabbits Animal Models 37 3.4.1 Verification of OA Model (Macroscopic and Histological Examinations) 37 3.4.2 Verification of OA Model (Proinflammatory Cytokines Detection) 40 3.4.3 Regeneration of Osteochondral Defect 41 3.4.3.1 Macroscopic Evaluations 41 3.4.3.2 Micro-CT reconstruction Analysis 43 3.4.3.3 Histological and Immunohistochemical Analysis 45 Chapter 4: Discussion 50 Chapter 5: Conclusion 57 Chapter 6: Limitations and Future Works 58 References 59

    [1]Bhosale A. M. and Richardson J. B., "Articular cartilage: structure, injuries and review of management," (in eng), Br Med Bull, vol. 87, pp. 77-95, 2008, doi: 10.1093/bmb/ldn025.
    [2]Temenoff J. S. and Mikos A. G., "Review: tissue engineering for regeneration of articular cartilage," (in eng), Biomaterials, vol. 21, no. 5, pp. 431-40, Mar 2000, doi: 10.1016/s0142-9612(99)00213-6.
    [3]Newman A. P., "Articular cartilage repair," (in eng), Am J Sports Med, vol. 26, no. 2, pp. 309-24, Mar-Apr 1998, doi: 10.1177/03635465980260022701.
    [4]NABZDYK C., PRADHAN L., MOLINA J., PERIN E., PANIAGUA D., and ROSENSTRAUCH D., "Auricular Chondrocytes - From Benchwork to Clinical Applications," In Vivo, vol. 23, no. 3, pp. 369-380, 2009. [Online]. Available: https://iv.iiarjournals.org/content/invivo/23/3/369.full.pdf.
    [5]Sophia Fox A. J., Bedi A., and Rodeo S. A., "The basic science of articular cartilage: structure, composition, and function," (in eng), Sports Health, vol. 1, no. 6, pp. 461-8, Nov 2009, doi: 10.1177/1941738109350438.
    [6]Adarmes H., Donders, Leonardo, Dörner, Cristóbal, González, Ema, and Galleguillos M., "Glycosaminoglycans (GAGs) determination in healthy and damaged equine articular cartilage," Austral journal of veterinary sciences, vol. 49, pp. 129-133, 2017. [Online]. Available: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-81322017000200129&nrm=iso.
    [7]Kelly D. J., Crawford A., Dickinson S. C., Sims T. J., Mundy J., Hollander A. P. et al., "Biochemical markers of the mechanical quality of engineered hyaline cartilage," (in eng), J Mater Sci Mater Med, vol. 18, no. 2, pp. 273-81, Feb 2007, doi: 10.1007/s10856-006-0689-2.
    [8]Di Bella C., Fosang A., Donati D. M., Wallace G. G., and Choong P. F., "3D Bioprinting of Cartilage for Orthopedic Surgeons: Reading between the Lines," (in eng), Front Surg, vol. 2, p. 39, 2015, doi: 10.3389/fsurg.2015.00039.
    [9]Zhang L., Hu J., and Athanasiou K. A., "The role of tissue engineering in articular cartilage repair and regeneration," (in eng), Crit Rev Biomed Eng, vol. 37, no. 1-2, pp. 1-57, 2009, doi: 10.1615/critrevbiomedeng.v37.i1-2.10.
    [10]Responte D. J., Natoli R. M., and Athanasiou K. A., "Collagens of articular cartilage: structure, function, and importance in tissue engineering," (in eng), Crit Rev Biomed Eng, vol. 35, no. 5, pp. 363-411, 2007, doi: 10.1615/critrevbiomedeng.v35.i5.20.
    [11]O'Driscoll S. W., "The healing and regeneration of articular cartilage," (in eng), J Bone Joint Surg Am, vol. 80, no. 12, pp. 1795-812, Dec 1998.
    [12]Deng C., Chang J., and Wu C., "Bioactive scaffolds for osteochondral regeneration," Journal of Orthopaedic Translation, vol. 17, pp. 15-25, 2019/04/01/ 2019, doi: https://doi.org/10.1016/j.jot.2018.11.006.
    [13]Murphy L. and Helmick C. G., "The Impact of Osteoarthritis in the United States: A Population-Health Perspective: A population-based review of the fourth most common cause of hospitalization in U.S. adults," Orthopaedic Nursing, vol. 31, no. 2, 2012. [Online]. Available: https://journals.lww.com/orthopaedicnursing/Fulltext/2012/03000/The_Impact_of_Osteoarthritis_in_the_United_States_.6.aspx.
    [14]Murray C. J. L., Vos T., Lozano R., Naghavi M., Flaxman A. D., Michaud C. et al., "Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010," The Lancet, vol. 380, no. 9859, pp. 2197-2223, 2012/12/15/ 2012, doi: https://doi.org/10.1016/S0140-6736(12)61689-4.
    [15]Charlier E., Deroyer C., Ciregia F., Malaise O., Neuville S., Plener Z. et al., "Chondrocyte dedifferentiation and osteoarthritis (OA)," Biochemical Pharmacology, vol. 165, pp. 49-65, 2019/07/01/ 2019, doi: https://doi.org/10.1016/j.bcp.2019.02.036.
    [16]Mathiessen A. and Conaghan P. G., "Synovitis in osteoarthritis: current understanding with therapeutic implications," Arthritis Research & Therapy, vol. 19, no. 1, p. 18, 2017/02/02 2017, doi: 10.1186/s13075-017-1229-9.
    [17]Kuyinu E. L., Narayanan G., Nair L. S., and Laurencin C. T., "Animal models of osteoarthritis: classification, update, and measurement of outcomes," Journal of Orthopaedic Surgery and Research, vol. 11, no. 1, p. 19, 2016/02/02 2016, doi: 10.1186/s13018-016-0346-5.
    [18]Jimenez P. A., Glasson S., Trubetskoy O. V., and Haimes H., "Spontaneous osteoarthritis in Dunkin Hartley guinea pigs: Histologic, radiologic, and biochemical changes," Laboratory animal science, vol. 47, pp. 598-601, 01/01 1998.
    [19]Yan J. Y., Tian F. M., Wang W. Y., Cheng Y., Xu H. F., Song H. P. et al., "Age dependent changes in cartilage matrix, subchondral bone mass, and estradiol levels in blood serum, in naturally occurring osteoarthritis in Guinea pigs," (in eng), Int J Mol Sci, vol. 15, no. 8, pp. 13578-95, Aug 5 2014, doi: 10.3390/ijms150813578.
    [20]Little C. B. and Zaki S., "What constitutes an “animal model of osteoarthritis” – the need for consensus?," Osteoarthritis and Cartilage, vol. 20, no. 4, pp. 261-267, 2012/04/01/ 2012, doi: https://doi.org/10.1016/j.joca.2012.01.017.
    [21]Lampropoulou-Adamidou K., Lelovas P., Karadimas E. V., Liakou C., Triantafillopoulos I. K., Dontas I. et al., "Useful animal models for the research of osteoarthritis," European Journal of Orthopaedic Surgery & Traumatology, vol. 24, no. 3, pp. 263-271, 2014/04/01 2014, doi: 10.1007/s00590-013-1205-2.
    [22]McCoy A. M., "Animal Models of Osteoarthritis: Comparisons and Key Considerations," (in eng), Vet Pathol, vol. 52, no. 5, pp. 803-18, Sep 2015, doi: 10.1177/0300985815588611.
    [23]Guingamp C., Gegout-Pottie P., Philippe L., Terlain B., Netter P., and Gillet P., "Mono-iodoacetate-induced experimental osteoarthritis: a dose-response study of loss of mobility, morphology, and biochemistry," (in eng), Arthritis Rheum, vol. 40, no. 9, pp. 1670-9, Sep 1997, doi: 10.1002/art.1780400917.
    [24]Bove S. E., Calcaterra S. L., Brooker R. M., Huber C. M., Guzman R. E., Juneau P. L. et al., "Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis," (in eng), Osteoarthritis Cartilage, vol. 11, no. 11, pp. 821-30, Nov 2003, doi: 10.1016/s1063-4584(03)00163-8.
    [25]Huber M., Trattnig S., and Lintner F., "Anatomy, Biochemistry, and Physiology of Articular Cartilage," Investigative Radiology, vol. 35, no. 10, 2000. [Online]. Available: https://journals.lww.com/investigativeradiology/Fulltext/2000/10000/Anatomy,_Biochemistry,_and_Physiology_of_Articular.3.aspx.
    [26]Asik M., Ciftci F., Sen C., Erdil M., and Atalar A., "The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results," (in eng), Arthroscopy, vol. 24, no. 11, pp. 1214-20, Nov 2008, doi: 10.1016/j.arthro.2008.06.015.
    [27]Inderhaug E. and Solheim E., "Osteochondral Autograft Transplant (Mosaicplasty) for Knee Articular Cartilage Defects," (in eng), JBJS Essent Surg Tech, vol. 9, no. 4, Oct-Dec 2019, doi: 10.2106/jbjs.St.18.00113.
    [28]Hangody L. and Füles P., "Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience," (in eng), J Bone Joint Surg Am, vol. 85-A Suppl 2, pp. 25-32, 2003, doi: 10.2106/00004623-200300002-00004.
    [29]Saris D. B. F., Vanlauwe J., Victor J., Almqvist K. F., Verdonk R., Bellemans J. et al., "Treatment of Symptomatic Cartilage Defects of the Knee: Characterized Chondrocyte Implantation Results in Better Clinical Outcome at 36 Months in a Randomized Trial Compared to Microfracture," The American Journal of Sports Medicine, vol. 37, no. 1_suppl, pp. 10-19, 2009/11/01 2009, doi: 10.1177/0363546509350694.
    [30]Marlovits S., Zeller P., Singer P., Resinger C., and Vécsei V., "Cartilage repair: generations of autologous chondrocyte transplantation," (in eng), Eur J Radiol, vol. 57, no. 1, pp. 24-31, Jan 2006, doi: 10.1016/j.ejrad.2005.08.009.
    [31]Benthien J. P. and Behrens P., "Autologous Matrix-Induced Chondrogenesis (AMIC): Combining Microfracturing and a Collagen I/III Matrix for Articular Cartilage Resurfacing," (in eng), Cartilage, vol. 1, no. 1, pp. 65-8, Jan 2010, doi: 10.1177/1947603509360044.
    [32]Muschler G. F., Nitto H., Boehm C. A., and Easley K. A., "Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors," (in eng), J Orthop Res, vol. 19, no. 1, pp. 117-25, Jan 2001, doi: 10.1016/s0736-0266(00)00010-3.
    [33]Zhou Y., Qin R., Chen T., Zhang K., and Gui J., "3D bioprinting modified autologous matrix-induced chondrogenesis(AMIC) technique for repair of cartilage defects," Materials & Design, vol. 203, p. 109621, 2021/05/01/ 2021, doi: https://doi.org/10.1016/j.matdes.2021.109621.
    [34]Jeuken R. M., Roth A. K., Peters R., Van Donkelaar C. C., Thies J. C., Van Rhijn L. W. et al., "Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects," (in eng), Polymers (Basel), vol. 8, no. 6, Jun 4 2016, doi: 10.3390/polym8060219.
    [35]Zhang L., Hu J., and Athanasiou K. A., "The role of tissue engineering in articular cartilage repair and regeneration," (in eng), Critical reviews in biomedical engineering, vol. 37, no. 1-2, pp. 1-57, 2009 2009, doi: 10.1615/critrevbiomedeng.v37.i1-2.10.
    [36]Mochizuki T., Muneta T., Sakaguchi Y., Nimura A., Yokoyama A., Koga H. et al., "Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans," (in eng), Arthritis Rheum, vol. 54, no. 3, pp. 843-53, Mar 2006, doi: 10.1002/art.21651.
    [37]Moonen J. R., Krenning G., Brinker M. G., Koerts J. A., van Luyn M. J., and Harmsen M. C., "Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny," (in eng), Cardiovasc Res, vol. 86, no. 3, pp. 506-15, Jun 1 2010, doi: 10.1093/cvr/cvq012.
    [38]Homicz M. R., Schumacher B. L., Sah R. L., and Watson D., "Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition," (in eng), Otolaryngol Head Neck Surg, vol. 127, no. 5, pp. 398-408, Nov 2002, doi: 10.1067/mhn.2002.129730.
    [39]Musumeci G., Castrogiovanni P., Leonardi R., Trovato F. M., Szychlinska M. A., Di Giunta A. et al., "New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review," (in eng), World J Orthop, vol. 5, no. 2, pp. 80-8, Apr 18 2014, doi: 10.5312/wjo.v5.i2.80.
    [40]Pichler K., Musumeci G., Vielgut I., Martinelli E., Sadoghi P., Loreto C. et al., "Towards a better understanding of bone bridge formation in the growth plate - an immunohistochemical approach," (in eng), Connect Tissue Res, vol. 54, no. 6, pp. 408-15, 2013, doi: 10.3109/03008207.2013.828715.
    [41]Jorgensen C., Gordeladze J., and Noel D., "Tissue engineering through autologous mesenchymal stem cells," (in eng), Curr Opin Biotechnol, vol. 15, no. 5, pp. 406-10, Oct 2004, doi: 10.1016/j.copbio.2004.08.003.
    [42]Francis S. L., Duchi S., Onofrillo C., Di Bella C., and Choong P. F. M., "Adipose-Derived Mesenchymal Stem Cells in the Use of Cartilage Tissue Engineering: The Need for a Rapid Isolation Procedure," (in eng), Stem Cells Int, vol. 2018, p. 8947548, 2018, doi: 10.1155/2018/8947548.
    [43]do Amaral R., Almeida H. V., Kelly D. J., O'Brien F. J., and Kearney C. J., "Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy," (in eng), Stem Cells Int, vol. 2017, p. 6843727, 2017, doi: 10.1155/2017/6843727.
    [44]Zhou J., Wang Y., Liu Y., Zeng H., Xu H., and Lian F., "Adipose derived mesenchymal stem cells alleviated osteoarthritis and chondrocyte apoptosis through autophagy inducing," (in eng), J Cell Biochem, Oct 13 2018, doi: 10.1002/jcb.27530.
    [45]Ren K., He C., Xiao C., Li G., and Chen X., "Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering," (in eng), Biomaterials, vol. 51, pp. 238-249, May 2015, doi: 10.1016/j.biomaterials.2015.02.026.
    [46]Getgood A., Brooks R., Fortier L., and Rushton N., "Articular cartilage tissue engineering: today's research, tomorrow's practice?," (in eng), J Bone Joint Surg Br, vol. 91, no. 5, pp. 565-76, May 2009, doi: 10.1302/0301-620x.91b5.21832.
    [47]BaoLin G. and Ma P. X., "Synthetic biodegradable functional polymers for tissue engineering: a brief review," (in eng), Sci China Chem, vol. 57, no. 4, pp. 490-500, Apr 1 2014, doi: 10.1007/s11426-014-5086-y.
    [48]Söntjens S. H., Nettles D. L., Carnahan M. A., Setton L. A., and Grinstaff M. W., "Biodendrimer-based hydrogel scaffolds for cartilage tissue repair," (in eng), Biomacromolecules, vol. 7, no. 1, pp. 310-6, Jan 2006, doi: 10.1021/bm050663e.
    [49]Hou Q., De Bank P. A., and Shakesheff K. M., "Injectable scaffolds for tissue regeneration," Journal of Materials Chemistry, vol. 14, no. 13, 2004, doi: 10.1039/b401791a.
    [50]Lanzalaco S. and Armelin E., "Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications," (in eng), Gels, vol. 3, no. 4, p. 36, 2017, doi: 10.3390/gels3040036.
    [51]Fujishige S., Kubota K., and Ando I., "Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide)," The Journal of Physical Chemistry, vol. 93, no. 8, pp. 3311-3313, 1989/04/01 1989, doi: 10.1021/j100345a085.
    [52]Sershen S. R., Westcott S. L., Halas N. J., and West J. L., "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery," (in eng), J Biomed Mater Res, vol. 51, no. 3, pp. 293-8, Sep 5 2000, doi: 10.1002/1097-4636(20000905)51:3<293::aid-jbm1>3.0.co;2-t.
    [53]Mellati A., Kiamahalleh M. V., Madani S. H., Dai S., Bi J., Jin B. et al., "Poly(N-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering," (in eng), J Biomed Mater Res A, vol. 104, no. 11, pp. 2764-74, Nov 2016, doi: 10.1002/jbm.a.35810.
    [54]Das D., Ghosh P., Ghosh A., Haldar C., Dhara S., Panda A. B. et al., "Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(N-isopropylacrylamide) for in Vitro/in Vivo Controlled Drug Release," (in eng), ACS Appl Mater Interfaces, vol. 7, no. 26, pp. 14338-51, Jul 8 2015, doi: 10.1021/acsami.5b02975.
    [55]Soledad Lencina M. M., Iatridi Z., Villar M. A., and Tsitsilianis C., "Thermoresponsive hydrogels from alginate-based graft copolymers," European Polymer Journal, vol. 61, pp. 33-44, 2014/12/01/ 2014, doi: https://doi.org/10.1016/j.eurpolymj.2014.09.011.
    [56]Mellati A., Dai S., Bi J., Jin B., and Zhang H., "A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells," RSC Adv., vol. 4, no. 109, pp. 63951-63961, 2014, doi: 10.1039/c4ra12215a.
    [57]Hao T., Wen N., Cao J. K., Wang H. B., Lü S. H., Liu T. et al., "The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels," (in eng), Osteoarthritis Cartilage, vol. 18, no. 2, pp. 257-65, Feb 2010, doi: 10.1016/j.joca.2009.08.007.
    [58]Mi F. L., Tan Y. C., Liang H. F., and Sung H. W., "In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant," (in eng), Biomaterials, vol. 23, no. 1, pp. 181-91, Jan 2002, doi: 10.1016/s0142-9612(01)00094-1.
    [59]Yan L. P., Wang Y. J., Ren L., Wu G., Caridade S. G., Fan J. B. et al., "Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications," (in eng), J Biomed Mater Res A, vol. 95, no. 2, pp. 465-75, Nov 2010, doi: 10.1002/jbm.a.32869.
    [60]Miles K. B., Ball R. L., and Matthew H. W., "Chitosan films with improved tensile strength and toughness from N-acetyl-cysteine mediated disulfide bonds," (in eng), Carbohydr Polym, vol. 139, pp. 1-9, Mar 30 2016, doi: 10.1016/j.carbpol.2015.11.052.
    [61]Gough J. E., Scotchford C. A., and Downes S., "Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis," Journal of Biomedical Materials Research, Article vol. 61, no. 1, pp. 121-130, 2002, doi: 10.1002/jbm.10145.
    [62]Wu S. W., Liu X., Miller A. L., 2nd, Cheng Y. S., Yeh M. L., and Lu L., "Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering," (in eng), Carbohydr Polym, vol. 192, pp. 308-316, Jul 15 2018, doi: 10.1016/j.carbpol.2018.03.047.
    [63]Wehling N., Palmer G. D., Pilapil C., Liu F., Wells J. W., Müller P. E. et al., "Interleukin-1β and tumor necrosis factor α inhibit chondrogenesis by human mesenchymal stem cells through NF-κB–dependent pathways," Arthritis & Rheumatism, vol. 60, no. 3, pp. 801-812, 2009, doi: https://doi.org/10.1002/art.24352.
    [64]Wu S., Fadoju D., Rezvani G., and De Luca F., "Stimulatory effects of insulin-like growth factor-I on growth plate chondrogenesis are mediated by nuclear factor-kappaB p65," (in eng), J Biol Chem, vol. 283, no. 49, pp. 34037-44, Dec 5 2008, doi: 10.1074/jbc.M803754200.
    [65]Hashimoto J., Yoshikawa H., Takaoka K., Shimizu N., Masuhara K., Tsuda T. et al., "Inhibitory effects of tumor necrosis factor alpha on fracture healing in rats," Bone, vol. 10, no. 6, pp. 453-457, 1989/01/01/ 1989, doi: https://doi.org/10.1016/8756-3282(89)90078-1.
    [66]Kunisch E., Kinne R. W., Alsalameh R. J., and Alsalameh S., "Pro-inflammatory IL-1beta and/or TNF-alpha up-regulate matrix metalloproteases-1 and -3 mRNA in chondrocyte subpopulations potentially pathogenic in osteoarthritis: in situ hybridization studies on a single cell level," (in eng), Int J Rheum Dis, vol. 19, no. 6, pp. 557-66, Jun 2016, doi: 10.1111/1756-185x.12431.
    [67]Gerriets V., Bansal P., Goyal A., and Khaddour K., "Tumor Necrosis Factor Inhibitors," in StatPearls. Treasure Island (FL): StatPearls Publishing
    Copyight © 2021, StatPearls Publishing LLC., 2021.
    [68]Kawaguchi A., Nakaya H., Okabe T., Tensho K., Nawata M., Eguchi Y. et al., "Blocking of tumor necrosis factor activity promotes natural repair of osteochondral defects in rabbit knee," Acta Orthopaedica, vol. 80, pp. 606 - 611, 2009.
    [69]Wei J. L., Buza J., 3rd, and Liu C. J., "Does progranulin account for the opposite effects of etanercept and infliximab/adalimumab in osteoarthritis?: Comment on Olson et al.: "Therapeutic Opportunities to Prevent Post-Traumatic Arthritis: Lessons From the Natural History of Arthritis After Articular Fracture"," (in eng), J Orthop Res, vol. 34, no. 1, pp. 12-4, Jan 2016, doi: 10.1002/jor.23091.
    [70]Li X., Ding J., Zhuang X., Chang F., Wang J., and Chen X., "Chitosan-Based Scaffolds for Cartilage Regeneration," in Chitin and Chitosan for Regenerative Medicine, Dutta P. K. Ed. New Delhi: Springer India, 2016, pp. 61-82.
    [71]Spizzirri U. G., Iemma F., Cirillo G., Altimari I., Puoci F., and Picci N., "Temperature-sensitive hydrogels by graft polymerization of chitosan and N-isopropylacrylamide for drug release," (in eng), Pharm Dev Technol, vol. 18, no. 5, pp. 1026-34, Sep-Oct 2013, doi: 10.3109/10837450.2011.644298.
    [72]Kafedjiiski K., Jetti R. K., Föger F., Hoyer H., Werle M., Hoffer M. et al., "Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery," (in eng), Int J Pharm, vol. 343, no. 1-2, pp. 48-58, Oct 1 2007, doi: 10.1016/j.ijpharm.2007.04.019.
    [73]Cui Z., Lee B. H., Pauken C., and Vernon B. L., "Degradation, cytotoxicity, and biocompatibility of NIPAAm-based thermosensitive, injectable, and bioresorbable polymer hydrogels," (in eng), J Biomed Mater Res A, vol. 98, no. 2, pp. 159-66, Aug 2011, doi: 10.1002/jbm.a.33093.
    [74]Rebai M. A., Sahnoun N., Abdelhedi O., Keskes K., Charfi S., Slimi F. et al., "Animal models of osteoarthritis: characterization of a model induced by Mono-Iodo-Acetate injected in rabbits," (in eng), Libyan J Med, vol. 15, no. 1, p. 1753943, Dec 2020, doi: 10.1080/19932820.2020.1753943.
    [75]Vinod E., James J. V., Sabareeswaran A., Amirtham S. M., Thomas G., Sathishkumar S. et al., "Intraarticular injection of allogenic chondroprogenitors for treatment of osteoarthritis in rabbit knee model," (in eng), J Clin Orthop Trauma, vol. 10, no. 1, pp. 16-23, Jan-Feb 2019, doi: 10.1016/j.jcot.2018.07.003.
    [76]Hung C. T., Lima E. G., Mauck R. L., Takai E., LeRoux M. A., Lu H. H. et al., "Anatomically shaped osteochondral constructs for articular cartilage repair," (in eng), J Biomech, vol. 36, no. 12, pp. 1853-64, Dec 2003, doi: 10.1016/s0021-9290(03)00213-6.
    [77]Onishi O., Ikoma K., Kido M., Kabuto Y., Ueshima K., Matsuda K. I. et al., "Early detection of osteoarthritis in rabbits using MRI with a double-contrast agent," (in eng), BMC Musculoskelet Disord, vol. 19, no. 1, p. 81, Mar 13 2018, doi: 10.1186/s12891-018-2002-1.
    [78]Laverty S., Girard C. A., Williams J. M., Hunziker E. B., and Pritzker K. P. H., "The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rabbit," Osteoarthritis and Cartilage, vol. 18, pp. S53-S65, 2010/10/01/ 2010, doi: https://doi.org/10.1016/j.joca.2010.05.029.
    [79]Care. C. C. o. A., Guide to the care and use of experimental animals. 2017.
    [80]Wayne J. S., McDowell C. L., Shields K. J., and Tuan R. S., "In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering," (in eng), Tissue Eng, vol. 11, no. 5-6, pp. 953-63, May-Jun 2005, doi: 10.1089/ten.2005.11.953.
    [81]Gholami N., Jaleh B., Golbedaghi R., Larijani M. M., Wanichapichart P., Nasrollahzadeh M. et al., "Modification of Chitosan Membranes via Methane Ion Beam," (in eng), Molecules, vol. 25, no. 10, May 13 2020, doi: 10.3390/molecules25102292.
    [82]Oroojalian F., Jahanafrooz Z., Chogan F., Rezayan A. H., Malekzade E., Rezaei S. J. T. et al., "Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications," (in eng), J Cell Biochem, vol. 120, no. 10, pp. 17194-17207, Oct 2019, doi: 10.1002/jcb.28980.
    [83]Fu Y. C., Chen C. H., Wang C. Z., Wang Y. H., Chang J. K., Wang G. J. et al., "Preparation of porous bioceramics using reverse thermo-responsive hydrogels in combination with rhBMP-2 carriers: in vitro and in vivo evaluation," (in eng), J Mech Behav Biomed Mater, vol. 27, pp. 64-76, Nov 2013, doi: 10.1016/j.jmbbm.2013.06.009.
    [84]Hiob M. A., She S., Muiznieks L. D., and Weiss A. S., "Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts," (in eng), ACS Biomater Sci Eng, vol. 3, no. 5, pp. 712-723, May 8 2017, doi: 10.1021/acsbiomaterials.6b00220.
    [85]Armiento A. R., Alini M., and Stoddart M. J., "Articular fibrocartilage - Why does hyaline cartilage fail to repair?," Advanced Drug Delivery Reviews, vol. 146, pp. 289-305, 2019/06/01/ 2019, doi: https://doi.org/10.1016/j.addr.2018.12.015.
    [86]Hutmacher D. W., "Scaffolds in tissue engineering bone and cartilage," Biomaterials, vol. 21, no. 24, pp. 2529-2543, 2000/12/15/ 2000, doi: https://doi.org/10.1016/S0142-9612(00)00121-6.
    [87]Loh Q. L. and Choong C., "Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size," (in eng), Tissue Eng Part B Rev, vol. 19, no. 6, pp. 485-502, Dec 2013, doi: 10.1089/ten.TEB.2012.0437.
    [88]Fu L., Yang Z., Gao C., Li H., Yuan Z., Wang F. et al., "Advances and prospects in biomimetic multilayered scaffolds for articular cartilage regeneration," (in eng), Regen Biomater, vol. 7, no. 6, pp. 527-542, 2020, doi: 10.1093/rb/rbaa042.
    [89]Zuidema J. M., Rivet C. J., Gilbert R. J., and Morrison F. A., "A protocol for rheological characterization of hydrogels for tissue engineering strategies," (in eng), J Biomed Mater Res B Appl Biomater, vol. 102, no. 5, pp. 1063-73, Jul 2014, doi: 10.1002/jbm.b.33088.
    [90]Wang Q., Mynar J. L., Yoshida M., Lee E., Lee M., Okuro K. et al., "High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder," Nature, vol. 463, no. 7279, pp. 339-343, 2010/01/01 2010, doi: 10.1038/nature08693.
    [91]Wu J., Liu J., Shi Y., and Wan Y., "Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels," (in eng), J Mech Behav Biomed Mater, vol. 64, pp. 161-72, Dec 2016, doi: 10.1016/j.jmbbm.2016.07.007.
    [92]Chenite A., Buschmann M., Wang D., Chaput C., and Kandani N., "Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions," Carbohydrate Polymers, vol. 46, no. 1, pp. 39-47, 2001/09/01/ 2001, doi: https://doi.org/10.1016/S0144-8617(00)00281-2.
    [93]Lu W., Wang L., Wo C., and Yao J., "Ketamine attenuates osteoarthritis of the knee via modulation of inflammatory responses in a rabbit model," (in eng), Mol Med Rep, vol. 13, no. 6, pp. 5013-20, Jun 2016, doi: 10.3892/mmr.2016.5164.
    [94]Pearle A. D., Warren R. F., and Rodeo S. A., "Basic Science of Articular Cartilage and Osteoarthritis," Clinics in Sports Medicine, vol. 24, no. 1, pp. 1-12, 2005/01/01/ 2005, doi: https://doi.org/10.1016/j.csm.2004.08.007.
    [95]Yuan P. W., Liu D. Y., Chu X. D., Hao Y. Q., Zhu C., and Qu Q., "Effects of preventive administration of juanbi capsules on TNF-alpha, IL-1 and IL-6 contents of joint fluid in the rabbit with knee osteoarthritis," (in eng), J Tradit Chin Med, vol. 30, no. 4, pp. 254-8, Dec 2010, doi: 10.1016/s0254-6272(10)60052-0.
    [96]Meng X., Grad S., Wen C., Lai Y., Alini M., Qin L. et al., "An impaired healing model of osteochondral defect in papain-induced arthritis," (in eng), J Orthop Translat, vol. 26, pp. 101-110, Jan 2021, doi: 10.1016/j.jot.2020.07.005.
    [97]Yamada M., Tsukimura N., Ikeda T., Sugita Y., Att W., Kojima N. et al., "N-acetyl cysteine as an osteogenesis-enhancing molecule for bone regeneration," (in eng), Biomaterials, vol. 34, no. 26, pp. 6147-56, Aug 2013, doi: 10.1016/j.biomaterials.2013.04.064.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE