簡易檢索 / 詳目顯示

研究生: 楊婉琳
Yang, Wan-Lin
論文名稱: 含銀廢液電解還原之研究
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 86
中文關鍵詞: 填充材電解還原含銀廢液批式循環系統
外文關鍵詞: packing material, electrochemical reduction, wastewater containing silver ions, Batch recirculation system
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為探討二維平板式電極三維電解槽搭配批式循環系統,改變不同操作條件及填充材,探討本設備對含銀廢液中銀離子去除的可行性。
    實驗結果顯示在含高濃度銀離子( > 3000 mg/L)之照相沖印廢液電解還原時,銀離子去除率隨電流密度增加而升高,而且增加循環流量並不能有效提高去除率。顯示當電解還原高濃度銀離子時,反應並不受質傳限制。但當去除率達80%後去除率之提升逐漸減緩,顯示當濃度變低時,質傳限制開始主導反應進行,提供太高的電流密度無法有效率去除廢液中銀離子。模擬低濃度含銀廢水之電解還原過程中,質傳限制為最主要之影響因子,降低操作之電流密度及提高流量可得到較高銀離子去除率。當電量負荷控制在5 Coul/L時,分別以銅電極與不銹鋼電極操作處理100 mg/L之低濃度模擬含銀廢水,銀離子去除率皆可達到80%以上。若電量負荷降低至2.5 Coul/L,去除率可進一步提升至95%。在較低pH時(pH<4)或較大電流密度(2.0 mA/cm2)之操作下,會導致產氫之側反應發生,銀離子去除率會因此而降低,此現象在使用不銹鋼電極時更為明顯,去除率僅達35%。低濃度實際廢水與模擬廢水在電解還原時同樣受到質傳限制影響,在適當之電量負荷下,可以得到70%以上之銀離子去除率。對於低濃度實際廢水在填充珠子後,去除率有隨電流密度增加而提升之趨勢,顯示對於低濃度實際廢水之電解還原反應,在填充玻璃珠與塑膠珠後可降低質傳對電解還原反應之影響,填充珠子對於低濃度銀離子電解還原之質傳限制具正面改善效果。
    綜合以上結果可知,電解還原高濃度銀離子時,銀離子去除率隨電流密度增加而有上升之趨勢,但去除率80%後質傳限制開始主導反應進行,模擬之含銀廢水與實際低濃度廢水則同樣受到質傳之限制。添加填充材則可提高銀離子還原之極限電流,減少低濃度含銀廢水電解還原反應時之質傳限制。

    In this research, a 3-dimensional reactor in combination with paralleled plate electrodes was used for the removal of silver ions from diluted aqueous solution in the batch recirculation system. Influences of operating conditions including current density, flow rate, initial pH, electrode and packed material on the removal efficiency were investigated respectively.
    Silver ion (>3000 mg/L) removal efficiency from photographs developing waste stream increased as the current density increased. In addition, the increase in recirculation flow rate couldn’t promote the removal efficiency effectively. At the same time, the removal percentage increased linearly with operating time until 80% of removal ratio was attained. These results indicate that removal of silver ions at high concentration waste stream would not be limited by mass-transfer. These results indicate that whenever silver concentration drops to an extent that silver concentration gradient between liquid (solution) –solid (plate) becomes small, the effect of mass-transfer is weak, and therefore silver removal efficiency drops. The same phenomenon was also found in both sampled and simulated diluted solution (Ag+ concentration <100 mg/L). The removal efficiency could be improved by lowering current density and promoting recirculation flow rate. When the system was operated at charge loading of 5 Coul/L with copper cathode or stainless steel cathode, the removal percentages could be higher than 85% for simulated solution and 70% for sampled solution. If the system was operated at smaller charge loading (2.5 Coul/L), silver removal percentage could increase to 95%. Nevertheless, when system was operated at low pH value (pH<4) or higher current density (2.0 mA/cm2), hydrogen generating side-reaction would happen and led to poor silver removal. In stainless steel cathode system, the removal percentage was merely 35%. In order to improve the poor mass-transfer in diluted solution, various packing material was packed in the reactor. In experiments with packing to remove silver in diluted solution, the removal percentage could be promoted with in creasing current density. These results indicate that mass-transfer is no more the most important factor in the removal of silver ions. System with packing could improve the poor mass-transfer condition while removing diluted silver from the solution.
    In condition, the removal percentage of silver in dense solution could be improved with increasing the current density. Nevertheless, the removal percentage would be limited due to poor mass-transfer in the diluted solution. The system developed in this study can improve the mass-transfer efficiency and can have potential to be applied in the future.

    中文摘要.....IV 英文摘要.....VI 誌謝.....VIII 目錄.....IX 表目錄.....XII 圖目錄.....XIII 第一章 前言.....1 1-1研究動機及目的.....1 1-2 研究內容及方法.....2 第二章 文獻回顧.....4 2-1 含金屬廢液之概述.....4 2-1-1 含金屬廢液之產業.....4 2-1-2銀之有害毒性與水質標準.....6 2-2 照相沖印廢液組成及處理現況.....7 2-2-1 照相沖印之流程與原理.....7 2-2-2照相沖印廢液成分與性質.....10 2-2-3照相沖印廢液處理現況.....11 2-2-4小結.....13 2-3電解還原金屬.....14 2-3-1電解還原金屬之原理.....14 2-3-2電解還原之影響因子.....16 2-3-3 質傳對於電解還原之影響.....25 2-4小結.....27 第三章 實驗設備材料與方法.....32 3-1實驗架構.....32 3-1-1電解實驗設備.....32 3-1-2水質分析設備.....34 3-1-3電化學分析設備.....35 3-2 實驗材料.....37 3-2-1電解液之配置37 3-2-2電極材料.....37 3-2-3填充材料.....38 3-3實驗方法與步驟.....38 3-3-1模擬廢水電解還原實驗.....38 3-3-2加入填充材之電解還原實驗.....38 3-3-3 實際廢液之成分分析.....39 3-3-4 實際廢水之電解還原實驗.....39 3-3-5 銀離子分析.....39 3-3-6 電化學分析.....40 第四章 結果與討論.....41 4-1高濃度含銀實際廢液電解還原實驗.....41 4-1-1電解還原高濃度實際廢液行為探討.....41 4-1-2 小結.....45 4-2低濃度含銀廢水電解還原實驗.....46 4-2-1電解還原模擬含銀廢水行為探討.....46 4-2-2電解還原低濃度實際廢水之去除行為.....62 4-2-3 小結.....67 4-3填充材對電解還原反應之影響.....69 4-3-1 填充材對模擬廢水電解還原之影響.....69 4-3-2 填充材對實際低濃度廢水電解還原之影響.....74 4-3-3小結.....78 第五章 結論與建議.....79 5-1 結論.....79 5-2 建議.....80 參考文獻.....82

    Campbell, D.A., Dalrymple, I.M., Sunderland, I.G. and Tilston D.. The electrochemical recovery of metals from effluent and process streams. Resource, Conservation and Recycling, 10 25-33, (1994).

    Chatelut, M., Gobert, E. and Vittori, O.. Silver electrowinning from photographic fixing solutions using zirconium cathode. Hydrometallurgy, 54,79-90, (2000).

    Chung Y.H. and Park S.M.. Destruction of aniline by mediated electrochemical oxidation with Ce(IV) and Co(III) as mediators. J. Appl. Electrochem., 30, 685-691, (2000).

    Dutra, A.J.B., Espinola, A. and Borges, P.P.. Cadium removal from diluted aqueous solution by electrowinning in a flow-by cell. Minerals Engineering, 13 (10-11), 1139-1148, (2000).

    Garai et al., Recovery of silver, thiosulphate and calcium sulphate from photographic and film industry wastes, Hung. Teljes, 20178, p10, (1978).

    Genders, D. and Weiberg, N. L.. Electrochemistry for a Clear Environment, the Electrosynthesis Company, New York, (1992).

    Grau, J.M. and Bisang, J.M.. Silver electrodeposition from photographic processing solutions. Chem. Tech. Biotechnol., 53, 105-110, (1992).

    Holcombe, L.T. and Behrus, G.P.. Comparison of treatment methods for utility metal cleaning wastes. AIChE National Meeting, Boston, MA, (1986).

    Hradil, E.F. and Hradil, G.. Electrolytic recovery of precious and common metals. Metal Finishing / NOVEMBER, 85-88, (1984).

    Huang, C.P., Hsu, M.C. and Miller, P.. Recovery of EDTA from power plant boiler chemical cleaning wastewater. Journal of Environmental Engineering / OCTOBER, 919-924, (2000).

    Jeyaseelan, S. and Sathananthan, S.. Clean technology for treatment of photographic wastes and silver recovery. Environmental Monitoring and Assessment 44, 219-229, (1997).

    Katsuki, K., Hiroshi, N., Shigeharu, M. and Yasuo, K.. Simultaneous electrochemical removal of copper and chemical oxygen demand using a packed-bed electrode cell. Journal of applied electrochemistry 16, 121-126, (1986).

    Kim, B.M. and Weininger, J.L.. Electrolytic removal of heavy metals from wastewaters. Environmental Progress, 1 (2), 121-125,(1982).
    Parthasaradhy, N.V.. Practical electroplating handbook. PrenticeHall, Englewood, N.J., (1988).

    Sathaiyan, N., Adaikkalam, P., Kader Abdul J.A.M. and Visvanathan S.. Recovering silver from photographic process wastes, the Journal of the Minerals, Metal s & Materials Society, 42 (10), 38-40, Oct, (1990).

    Scott, A.C., Pitblado, R.M., Barton, G.W.. Experimental determination of the factors affecting Zinc electrowinning efficiency. Journal of Applied Electrochemistry 18 , 120-127, (1988).

    Scott, K. and Paton, E.M.. An analysis of metal recovery by electrodeposiotion from mixed metal ion solutions-part I. Theoretical behaviour of batch recycle operation. Electrochimica Acta, 38 (15), 2181-2189, (1993).

    Scott, K. and Paton, E.M.. An analysis of metal recovery by electrodeposiotion from mixed metal ion solutions-part II. Electrodeposition of cadium from process solutions. Electrochemica Acta, 38 (15), 2191-2197, (1993).

    Simonsson, D.. A flow-by packed-bed electrode for removal of metal ions from waste waters. Journal of Applied Electrochemistry 14, 595-604, (1984).

    Yeh, R.S., Wang , Y.Y. and Wan, C.C.. Removal of Cu-EDTA compounds via electrochemical process with coagulation. Wat. Res, 29 (2), 597-599, (1993).

    Tricoli, V., Vatistas, N., Marconi, P. F.. Removal of silver using graphite-felt electrodes. Journal of Applied Electrochemistry 23, 390-392, (1992).

    Zhou, C.-D. and Chin, D.-T.. Copper recovery and cyanide destruction with a plating barrel cathode and a packed-bed anode. Plating and Surface Finishing/ June, 69-77, (1993).

    Zhou, C.-D. and Chin, D.-T.. Continuous electrolytic treatment of complex metal cyanides with a rotating barrel plater as the cathode and a packed bed as the anode, Plating and Surface Finishing/ June, 70-78, (1994).

    工業污染防制技術,行政院國家科學委員會科學技術資料中心,(1992)。

    王振乾,張家源,米孝萱,陳啟榮,陳薇色,黃婉如,陳珮蓮,螯合基側鏈對弱酸型樹脂去除重金屬的影響,第十四屆廢水處理技術研討會論文集661-666,(1999)。

    林立人,鈍性玻璃珠流體化電解槽應用於重金屬螯合廢水之金屬回收,國立成功大學化學工程研究所,碩士論文,(1995)。

    林世民,工業污染防治報導月刊第八期,經濟部工業局,(1996)。

    毒性安全衛生手冊,行政院勞工委員會勞工安全衛生研究所, (2002)。

    相片沖洗業危害預防手冊,行政院勞工委員會勞工安全衛生研究所,(2000)。

    郭國良,Fenton法預處理照相廢液之研究,私立淡江大學水資源暨環境工程研究所,碩士論文,(1993)。

    張苕旭,分析化學基礎,藝軒圖書出版,(1989)。

    張秋萍,盧明俊,陳重男,利用亞鐵離子催化過氧化氫處理彩色照相沖洗廢液,第二十二屆廢水處理技術研討會論文集,225-232,(1997)。

    鄭智和,黃進修,鍾美華,羅彗瑋,楊炎勝,張蕙蘭,事業廢棄物回收再利用速報第二十三期,工業技術研究院化學工業研究所,(2000)。

    蔣立中,江士豪,陳怡齡,黃瓊瑤,林莉芳,電解氧化破壞2-氯酚之研究,第二十五屆廢水處理研討會論文集620-624,(2000)。

    下載圖示 校內:立即公開
    校外:2003-08-07公開
    QR CODE