簡易檢索 / 詳目顯示

研究生: 施詠仁
Shih, Yung-Jen
論文名稱: Stellite 1 鈷基超合金與SKH51高速鋼攪拌棒之摩擦攪拌磨耗特性研究
Wear Characteristics of Stellite 1 and SKH51 Friction Stir Tools
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 鈷基超合金高速鋼攪拌棒摩擦攪拌磨耗
外文關鍵詞: Stellite 1, SKH51, Friction stir tool, Friction Stir Process, Wear
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摩擦攪拌銲接與製程(Friction Stir Welding/Processing, FSW/FSP)長期存在攪拌棒頭部之磨耗問題。本研究利用轉移式電漿電弧(Plasma Transfer Arc, PTA)熔解法將耐磨耗之Stellite 1 鈷基超合金被覆在具有優良抗熱裂特性且價格低廉之SKD61模具鋼攪拌棒頭部,期望研發出具有高磨耗阻抗且符合經濟效益之Stellite 1 鈷基超合金攪拌棒(SKD61- ST1)。本研究在相同實驗參數下將SKD61- ST 1攪拌棒與現行材SKH51高速鋼系列之攪拌棒(回火材SKH51-T與退火材SKH51-A)分別進行5083鋁合金摩擦攪拌製程,除了對其磨耗量作一比較,更將攪拌棒之磨耗部位作解析,探討攪拌棒之磨耗機制與影響攪拌棒磨耗行為之因素。
    研究結果顯示Stellite 1被覆層為一含M7C3及M23C6 型碳化物的凝固組織,SKD61基材對Stellite 1被覆層之稀釋效應極低,被覆組織之基地相為γ-Co。在鋁合金FSP中,SKD61-ST1具有高於SKH51-A及SKH51-T高速鋼攪拌棒之磨耗阻抗。此外,藉由SEM及EPMA針對攪拌棒頭部之磨耗現象作進一步解析,SKD61-ST1、SKH51-A及SKH51-T攪拌棒在FSP中均產生滑動磨耗,來自棒頭之材料碎片與來自鋁合金之碎片混合,於攪拌棒之凸梢與肩部表面形成轉移層,推測轉移層之脫落最終造成攪拌棒之質量損失。由Thin Film XRD之分析結果可知,轉移層內部分材料碎片產生類似機械合金化之反應,於SKD61-ST1之轉移層內生成Al9Co2,SKH51-A及SKH51-T之轉移層內則生成Al5Fe2與AlFe。
    根據實驗結果,硬度與材料本質為本研究中影響攪拌棒磨耗行為之主要因素:高硬度之SKH51-T,其轉移層厚度、轉移層包覆棒頭之覆蓋率以及磨耗量均較低硬度之SKH51 -A為低。SKD61-ST1雖然棒頭Stellite 1鈷基超合金組織之硬度低於SKH51-T,但可能因Co-Al之金屬親合性與adhesion energy 低於Fe -Al,產生較薄且覆蓋率較低之轉移層,最後導致較低之磨耗量。

    The surface overlaying treatment is aimed to enhance surface properties of materials such as microhardness, wear-resistance, corrosion -resistance and etc. In this study, Stellite 1 cobalt-based alloy was overlaid on SKD61 steel by plasma transfer arc (PTA) process to form SKD61-ST1 friction stir tool for friction stir welding and process (FSW/FSP). The solidification structure of overlayer was explored. Furthermore, the wear resistance of SKD61-ST1, annealed SKH51 (SKH51-A) and tempered SKH51 (SKH51-T) high speed steel friction stir tools was evaluated by FSP test in which 5083 aluminum alloy was processed. The wear characteristics of SKD61-ST1, SKH51-A and SKH51-T friction stir tools were compared and studied as well.
    Results indicated that Stellite 1 overlayer of SKD61-ST1 is hypereutectic structure with large amount of M7C3 and M23C6 carbides under 90A overlaying current. The phase of matrix is -Co. Applying SKD61-ST1, SKH51-A and SKH51-T to FSP tests, sliding wear occurs and weight loss results revealed that the wear resistance of SKD61-ST1 is the highest. In addition, according to SEM and EPMA analysis, a transfer layer containing fragments from both sliding parts was formed on the interface between 5083 aluminum alloy and friction stir tools after FSP. It was proposed that the decohesion of transfer layer results in the weight loss of friction stir tools. Analyzing the transfer layers one step further by Thin Film XRD, Al9Co2 was found in the case of SKD61-ST1; however, Al5Fe2 and AlFe occur in the cases of SKH51-T and SKH51-A. The formation of these compounds is similar to the process of mechanical alloying in a ball mill.
    Thickness and coverage of transfer layers on friction stir tools were measured by SEM. Since SKH51-A is softer than SKH51-T, both thickness and coverage of transfer layer on SKH51-A were greater than that of SKH51-T. Nevertheless, thickness and coverage of transfer layer on SKD61-ST1 is thinnest and lowest among the three cases although SKD61-ST1 is softer than SKH51-T. It is proposed that hardness is not the only factor to influence transfer layer and wear characteristics of friction stir tools. Compatibilities and adhesion energies between Al-Co and Al-Fe also play significant roles in this study.

    總目錄 中文摘要 Ⅰ 英文摘要 Ⅲ 總目錄 Ⅶ 表目錄 Ⅹ 圖目錄 XI 第一章 前言 1 第二章 文獻回顧 3 2-1 摩擦攪拌銲接與製程 3 2-2 滑動磨耗(sliding wear) 4 2-2.1 滑動磨耗的機制 4 2-2.2 金屬親合性對滑動磨耗之影響 6 2-2.3 硬度對滑動磨耗之影響 7 2-3 攪拌棒之選擇 9 2-4 表面合金被覆 10 2-4.1被覆處理常用之被覆材 10 2-4.2轉移式電漿電弧(PlasmaTransferred Arc, PTA)熔解法 11 第三章 實驗方法 16 3-1 實驗流程 16 3-2 利用轉移式電漿電弧法對SKD61進行被覆處理 17 3-3 SKH51高速鋼之熱處理 17 3-4 摩擦攪拌試驗 18 3-5量測攪拌棒之磨耗量 18 3-6 解析攪拌棒頭部之磨耗行為 19 3-6.1 OM觀察棒頭經過FSP之金相與磨耗情形 19 3-6.2 SEM/EPMA分析棒頭經過FSP之微觀組織 19 3-6.3 薄膜X-光繞射分析棒頭FSP前後之組織差異 20 第四章 實驗結果 30 4-1 PTA被覆Stellite 1合金於SKD61模具鋼之凝固組織 30 4-2 SKH51-A與SKH51-T之微觀組織與硬度 31 4-3 SKD61-ST1、SKH51-A、SKH51-T及TCC之磨耗量 31 4-4 SKD61-ST1攪拌棒之磨耗現象 32 4-5 SKH51-A攪拌棒之磨耗現象 34 4-6 SKH51-T攪拌棒之磨耗現象 36 第五章 討論 61 5-1 SKH51高速鋼之熱處理 61 5-2 SKD61-ST1與SKH51攪拌棒之磨耗機制探討 62 5-3 攪拌棒磨耗行為之影響因素 64 5-3.1 攪拌棒硬度值對磨耗行為之影響 65 5-3.2 材料本質(金屬親合性)對攪拌棒磨耗行為之影響 66 第六章 結論 74 參考文獻 76

    1. D. Liang, P. Korgul and H. Jones, Acta Materialia, 44, 7, 2999-3004, (1996).
    2. J. Q. Su, T. W. Nelson and C. J. Sterling, Materials Science and Engineering A, 405, 277-286, (2005).
    3. T. R. McNelley, S. Swaminathan and J. Q. Su, Scripta Materialia, 58, 349-354, (2008).
    4. H. J. Liu, J. C. Feng, H. Fujii and K., Int. J. Mach. Tool. Manu., 45, 1635-1639, (2005).
    5. G. J. Fernandez and L. E. Murr, Mat. Charact., 52, 65-75, (2004).
    6. A. Ball, Materials Engineering, 73-82, (1986).
    7. M. Kerridge and J. K. Lancaster, Proc. R. Soc. London, Ser. A 236, 250-264, (1956).
    8. J. Clarke and A.D. Sarkar, Wear, 82, 179-195, (1982).
    9. K. Razavizadeh and T.S. Eyre, Wear, 79, 325-333, (1982).
    10. P. Heilmann, J. Don, T. C. Sun, D. A. Rigney and W. A. Glaeser, Wear, 91, 171-190, (1983).
    11. D. A. Rigney, L. H. Chen and M. G. S. Naylor, Wear, 100, 195-219, (1984).
    12. K. Budinski, “Surface Engineering for Wear Resistance”, Prentice-Hall, Englewood Cliffs, NJ, 30-33, (1988).
    13. F. P. Bowden and D. Tabor, Methuen’s Monographs on Physical Subjects, London, 33–43, (1956).
    14. T.F.J. Quinn, Wear, 15, 413, (1971).
    15. N. P. Suh, Wear, 44, 1-16, (1977).
    16. N. P. Suh, Wear, 25, 114-124, (1973).
    17. E. Rabinowicz, “Friction and Wear of Materials”, 2nd edition, Wiley-Interscience, 33-40, (1995).
    18. R. Holm, “Electric Contacts”, Almqvist and Wiksells, Stockholm, (1946).
    19. E. Rabinowicz and D.Tabor, Proc. Roy. Soc., A 208, 455-475, (1951).
    20. J. T. Burwell and C. D. Strang, J. Appl. Phys., 23, 18-28, (1952).
    21. J. F. Archard, J. Appl. Phys., 24, 981-988, (1953).
    22. G. Hoyle, “High Speed Steels”, Butterworths, Ch1, 1, (1988).
    23. Metals Handbook, ”Hard Facing Materials”, edited by J. H. Devletian, W. E. Wood, 9th edition, ASM, 6, 773-777, (1983).
    24. Metals Handbook, 9th edition, ASM, 6, 771-803, (1983).
    25. Metals Handbook, 9th edition, ASM, 6, 26-28, (1983).
    26. Welding Handbook,“Surfacing”, 7th edition, AWS, 1, Ch14, 518-529, (1980).
    27.Metals Handbook, “Hard Surfacing”, Desk Edition, 30.59-30.32, (1984).
    28. Metals Handbook, 9th edition, ASM, 3, 589-590, (1980).
    29. Welding Handbook, 6th edition, AWS, 1, Ch9, (1968).
    30. M. Hur, T. H. Hwang, W. T. Ju, C. M. Lee and S. H. Hong, Thin Solid
    Films, 390, 186-191, (2001).
    31. A. Hasui, E. Kasahara and H. Taguchi, “Studies on Plasma Welding”, Trans. National Research Institute for Metals, 65-72, (1969).
    32. 中村宇一,“プラズマ粉末肉盛溶接技術の基礎と應用”,溶接技術,8月號, 45-50頁,(1986)。
    33.柳樂勝洋,近藤義晴,“粉體プラズマ溶接-炭化物複合合金肉盛溶接”,溶接技術,11月號,34-39頁,(1984)。
    34.陳偉聲,轉移式電漿電弧熔解法被覆鈷基超合金於球墨鑄鐵基材之複合特性研究,國立成功大學材料科學及工程研究所博士論文,110-141頁,民國85年1月。
    35. 林宏茂,轉移式電漿電弧被覆鈷基超合金之磨耗特性研究,國立成功大學材料科學及工程研究所碩士論文,34-35頁,民國87年6月。
    36. "Premium Quality H-13 Steel Acceptance Criteria for Pressure Die Casting Dies", by the NADCA Die Materials Committee. NADCA Product # 207-90.
    37. H. Akamatsu, Y. Tanihara, and T. Ikeda, Jpn. J. Appl. Phys., 40, 1083-1086, (2001).
    38. G. Hoyle, “High Speed Steels”, Butterworths, Ch4, 52-74, (1988).
    39. T. Malkiewicz, F. Iron Steet Inst., 193, 25, (1959).
    40. F. Kayser and M.Cohen, Metal Progress, 61, 79, (1952).
    41. G. Hoyle, “High Speed Steels”, Butterworths, Ch4, 65, (1988).
    42. G. Hoyle, “High Speed Steels”, Butterworths, Ch4, 67-69, (1988).
    43. P. Heilmann, J. Don, T. C. Sun, D. A. Rigney and W. A. Glaeser, Wear, 91, 171-190, (1983).
    44. D. A. Rigney, Ann. Rev. Mater. Sci., 18, 141, (1988).
    45. J. S. Banjamin and T. E. Volin, Metall. Trans., 5, 1929-1934, (1974).
    46. W. F. Gale and T. C. Totemeier,“Smithells Metals Reference Book”, 8th edition, Ch.11, 34-37, (2004).
    47. M. Hansen and K. Anderko, “Constitution of Binary Alloys”, New York, (1985).
    48. W. G. Moffatt, “The Hand Book of Binary Phase Diagram”, Genium Publishing, Schenectady, NY.
    49. McLean, “Grain Boundaries in Metals”, Glarendon Press, Oxford, (1957).
    50. L. Vitos, A. V. Ruban and H. L. Skriver, Surface Science, 441, 186-202, (1998).

    下載圖示 校內:2012-07-27公開
    校外:2012-07-27公開
    QR CODE