簡易檢索 / 詳目顯示

研究生: 鍾莉葶
Chung, Li-Ting
論文名稱: 初探都市紋理與熱島局部高溫關係之研究—以原台中市為例
Study the Relationship Between Urban Fabric and the Local High Temperature areas of Heat Island - A case study in Taichung City
指導教授: 林漢良
Lin, Han-Liang
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 91
中文關鍵詞: 都市熱島現象都市紋理ASTER地區型空間自相關Spacemate
外文關鍵詞: Urban Heat Island, urban fabric, ASTER, LISA, Spacemate
相關次數: 點閱:163下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 都市化是建成環境取代天然土地的過程,並促使都市氣候的形成,由於人類的經濟活動以及人為建設產生並蓄積過多熱能,致使都市地區相對於其周邊地區猶如一座發熱的島嶼,被寒冷的海洋包圍,稱之為都市熱島(Urban Heat Island, UHI)。都市熱島現象的普遍定義為都市地區的溫度高於其周邊地區,常見以都市地區與鄉村地區之溫度差異(∆T_(u-r))來量測都市熱島強度(Urban Heat Island Intensity, UHII)。都市中承載過多的熱能使熱平衡被破壞,包括人工材質吸收較多太陽輻射熱能,再加上通勤、冷暖氣所排放的廢熱;此外,都市內可能因為量體的排列影響都市風的流動,形成了形成都市微氣候(micro climate),使其溫度有別於其周邊地區。因此,在都市與鄉村地區之間,還有都市內部,都存在溫度的差異,換言之,都市熱島現象存在全區效應與地區效應。近年來,出現各項研究分析都市熱島的空間特性與熱島影響因子之關係(Guo et al., 2015; Majumdar & Biswas, 2016)。然而,目前較少研究討論到都市地區內部紋理差異與熱島的空間特性之關係,所以本研究擬從熱島的空間特性去探討都市紋理的特徵與差異,進一步釐清都市熱島和都市紋理的關係。
    本研究以台中市為實證地區,原台中市地區為其都市地區,將都市的建物數值地形圖建立為150 m之紋理格網,並透過Spacemate多密度指標將紋理分為九種建物類型,另選用ASTER之日間與夜間的地表溫度資料以分析日夜之都市熱島現象。研究成果顯示日間的熱島效應影響比夜間強,而且在局部地區又有極強的熱島效應,日間都市地區較鄉村地區高約4℃、夜間高約2℃,另外,都市地區內的H-H地區之UHII平均值日間比夜間高1.75℃。再者,Kriging及Contour分析得知日間UHII≥3與夜間UHII≥2有明顯的高值聚集,而且日間在多處有局部極高的UHII出現。
    此外,研究成果也顯示都市地區外圍屬於非熱島地區,包括北、西及南屯區,較不受熱島效應影響並且為低強度且低緊湊度之紋理,以低強度單一建物(0≤L<3且0≤GSI<0.15)為主,在日間約佔六成、夜間七成;而市區中心及其周邊地區,主要分布在中、西、北區及其鄰近地帶,受到熱島效應影響,還有受到熱島效應影響又更大的局部地區,錯落在熱島地區範圍內,皆為較高強度且高緊湊度之紋理,以中強度街廓建物(3≤L<7且GSI≥0.25)為主,前者日夜間該建物皆約佔三成五,後者日間約佔四成、夜間佔三成。同時,Spacemate分析圖中顯示紋理特性與熱島強度的互動關係:大多數情況下都表現了隨UHII較高,而GSI、FSI和L上升、OSR下降,換言之局部高溫地區、熱島地區和非熱島地區的紋理特性之緊湊度和開發強度,是由緊湊/強至零散/弱。只是,在各個熱島特性地區中仍都有例外者,推測這些地區受到紋理以外的因素影響,使其熱島效應比類似的紋理更高或更低。

    In recent years, more and more research studied the relationship between the spatial pattern of Urban Heat Island (UHI) and its factors, however, there are still fewer discussions about the differences between the urban fabrics and their relationships with UHI. This study chooses Taichung City as the study area. The buildings in the city have been converted into a grid with a resolution of 150 m, and then divided into 9 building types through multiple density indicators. Besides, ASTER images are used to draw the UHI intensity (UHII) map. LISA is a method to identify UHII clusters.
    The results show that the intensity of UHI during daytime is stronger than nighttime and the temperature in some areas is extremely high. Non-heat island areas that are located outside the urban area are not affected by UHI, on the other hand, urban area and its surrounding areas are impacted by UHI, and some of which are greatly affected. Finally, through the Spacemate plane, we see the interaction between the urban fabric and the UHI phenomenon, which shows that as the degree of UHII increases, GSI, FSI, and L increase, while OSR decreases. This applies to non-heat island areas mainly composed of low-rise point buildings, as well as heat islands and higher temperature areas mainly composed of mid-rise block buildings, whether day or night. They all follow this rule: from local high-temperature areas to heat island areas, and then to non-heat island areas, the urban fabric changes from highly developed and highly intensive to low development and less intensive.

    目錄 第一章 緒論 1 第一節 研究背景 1 第二節 研究目的 2 第三節 研究範圍與限制 3 第二章 文獻回顧 4 第一節 都市微氣候與都市熱島效應 4 第二節 都市熱島與熱島影響因子研究 8 第三章 研究方法與設計 18 第一節 研究設計 18 第二節 研究資料 19 第三節 研究方法 34 第四章 實證分析 38 第一節 實證地區 38 第二節 都市熱島與局部高溫地區 42 第三節 都市紋理與熱島空間特性 53 第四節 各熱島特性地區與密度指標 79 第五章 結論與建議 84 參考文獻 87 壹、外文文獻 87 貳、中文文獻 90

    壹、外文文獻
    1.Ando, H., Morishima, W., Yokoyama, H., & Akasaka, I. (2009). Effects of urban geometry on urban heat islands in Tokyo. Paper presented at the The seventh International Conference on Urban Climate.
    2.Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115.
    3.Berghauser-Pont, M., & Haupt, P. (2010). Spacematrix: space, density and urban form: NAi Publishers.
    4.Britter, R., & Hanna, S. (2003). Flow and dispersion in urban areas. Annual review of fluid mechanics, 35(1), 469-496.
    5.Connors, J. P., Galletti, C. S., & Chow, W. T. (2013). Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape ecology, 28(2), 271-283.
    6.Di Sabatino, S., Solazzo, E., Paradisi, P., & Britter, R. (2008). A simple model for spatially-averaged wind profiles within and above an urban canopy. Boundary-layer meteorology, 127(1), 131-151.
    7.Gillespie, A., Cothern, J., Rokugawa, S., Matsunaga, T., Hook, S., & Kahle, A. (1998). A temperature and emissivity algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on geoscience and remote sensing, 36(4), 1116-1126.
    8.Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. (1998). A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on geoscience and remote sensing, 36(4), 1113-1126.
    9.Grimmond, S. (2007). Urbanization and global environmental change: local effects of urban warming. The Geographical Journal, 173(1), 83-88.
    10.Guo, G., Wu, Z., Xiao, R., Chen, Y., Liu, X., & Zhang, X. (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and urban planning, 135, 1-10.
    11.Hang, J., & Li, Y. (2010). Ventilation strategy and air change rates in idealized high-rise compact urban areas. Building and Environment, 45(12), 2754-2767.
    12.Hartz, D., Prashad, L., Hedquist, B., Golden, J., & Brazel, A. (2006). Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions. Remote Sensing of Environment, 104(2), 190-200.
    13.Haupt, P., Pont, M. B., & Moudon, A. V. (2005). Spacemate: the spatial logic of urban density: Ios Pr Inc.
    14.Howard, L. (1833). Climate of London deduced from meteorological observation. Harvey and Darton, 1(3), 1-24.
    15.Jusuf, S. K., Wong, N. H., Hagen, E., Anggoro, R., & Hong, Y. (2007). The influence of land use on the urban heat island in Singapore. Habitat international, 31(2), 232-242.
    16.Kato, S., Yamaguchi, Y., Liu, C.-C., & Sun, C.-Y. (2008). Surface heat balance analysis of Tainan City on March 6, 2001 using ASTER and Formosat-2 data. Sensors, 8(9), 6026-6044.
    17.Kropf, K. (2014). Ambiguity in the definition of built form. Urban morphology, 18(1), 41-57.
    18.Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249-3263.
    19.Majumdar, D. D., & Biswas, A. (2016). Quantifying land surface temperature change from LISA clusters: An alternative approach to identifying urban land use transformation. Landscape and urban planning, 153, 51-65.
    20.Manley, G. (1958). On the frequency of snowfall in metropolitan England. Quarterly Journal of the Royal Meteorological Society, 84(359), 70-72.
    21.Mavrogianni, A., Davies, M., Chalabi, Z., Wilkinson, P., Kolokotroni, M., & Milner, J. (2009). Space heating demand and heatwave vulnerability: London domestic stock. Building Research & Information, 37(5-6), 583-597.
    22.Mavrogianni, A., Wilkinson, P., Davies, M., Biddulph, P., & Oikonomou, E. (2012). Building characteristics as determinants of propensity to high indoor summer temperatures in London dwellings. Building and Environment, 55, 117-130.
    23.Memon, R. A., Leung, D. Y., & Liu, C.-H. (2009). An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmospheric Research, 94(3), 491-500.
    24.Ng, E., Yuan, C., Chen, L., Ren, C., & Fung, J. C. (2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: a study in Hong Kong. Landscape and urban planning, 101(1), 59-74.
    25.Nunez, M., & Oke, T. R. (1977). The energy balance of an urban canyon. Journal of Applied Meteorology, 16(1), 11-19.
    26.Oke, T., & Cleugh, H. (1987). Urban heat storage derived as energy balance residuals. Boundary-layer meteorology, 39(3), 233-245.
    27.Oke, T. R. (1976). The distinction between canopy and boundary‐layer urban heat islands. Atmosphere, 14(4), 268-277.
    28.Oke, T. R. (1988). The urban energy balance. Progress in Physical geography, 12(4), 471-508.
    29.Patel, S. B. (2011). Analyzing urban layouts–can high density be achieved with good living conditions? Environment and Urbanization, 23(2), 583-595.
    30.Ramponi, R., Blocken, B., Laura, B., & Janssen, W. D. (2015). CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Building and Environment, 92, 152-166.
    31.Rao, P. K. (1972). Remote sensing of urban" heat islands" from an environmental satellite. Bulletin of the American meteorological society, 53(7), 647-648.
    32.Roth, M., Oke, T., & Emery, W. (1989). Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. International Journal of Remote Sensing, 10(11), 1699-1720.
    33.Soltani, A., & Sharifi, E. (2017). Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Frontiers of Architectural Research, 6(4), 529-538.
    34.Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American meteorological society, 93(12), 1879-1900.
    35.Van Nes, A., Berghauser Pont, M., & Mashhoodi, B. (2012). Combination of Space syntax with spacematrix and the mixed use index: The Rotterdam South test case. Paper presented at the 8th International Space Syntax Symposium, Santiago de Chile, Jan. 3-6, 2012.
    36.Xu, Y., Ren, C., Ma, P., Ho, J., Wang, W., Lau, K. K.-L., . . . Ng, E. (2017). Urban morphology detection and computation for urban climate research. Landscape and urban planning, 167, 212-224.
    37.Ye, Y., & Van Nes, A. (2014). Quantitative tools in urban morphology: Combining space syntax, spacematrix and mixed-use index in a GIS framework. Urban morphology, 18(2), 97-118.
    貳、中文文獻
    1.何佳薇、周天穎、楊龍士 (2011)。臺中地區土地利用變化於熱島效應之研究。Journal of Photogrammetry and Remote Sensing,16,139-149。
    2.李魁鵬 (1999)。台灣四大都會區都市熱島之研究。成功大學建築學系博士論文。
    3.林憲德、孫振義、李魁鵬、郭曉青 (2005)。台南地區都市規模與都市熱島強度之研究。都市與計劃,32(1),83-97。
    4.林憲德、郭曉青、李魁鵬、陳子謙、陳冠廷 (2001)。台灣海岸型城市之都市熱島現象與改善對策解析一以台南、高雄及新竹為例。都市與計劃,28(3),323-341。
    5.林憲德、陳冠廷、郭曉青 (2001)。台灣中型都市熱島現象與土地利用之觀測解析。規劃學報(28),47-64。
    6.孫振義 (2008)。運用遙測技術於都市熱島效應之研究。成功大學建築學系學位論文,1-87。
    7.孫振義、林憲德、呂罡銘、劉正千、陳瑞鈴 (2010)。台南市地表溫度與地表覆蓋關係之研究。都市與計劃,37(3),369-391。
    8.張效通、邱英浩 (2008)。以都市設計管制方法減緩都市住區熱環境之研究——分區管制對都市熱環境之影響分析。
    9.歐陽嶠暉 (2001)。都市環境學。詹氏書局。
    10.吉野正敏 (1976)。氣候學。日本:大明堂朱式會社。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE