| 研究生: |
丁祖全 Ting, Tsu-Chuan |
|---|---|
| 論文名稱: |
數值微分方程在凸輪分析上的應用 An Application of Numerical Differential Equation for the Motion of Cam and Follower |
| 指導教授: |
沈士育
Shen, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 剛體運動 、常微分方程 |
| 外文關鍵詞: | Rigid body motion, Ordinary differential equation |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要介紹一種計算平面凸輪接觸過程中接觸點的數值方法。
將平面凸輪運動視為平面兩曲線點接觸,將曲線參數化,利用剛體運動表達運動後的位置。
因兩曲線於接觸點的位置相同,單位法線向量相等,由向量分析使曲線接觸問題轉變為常微分方程式,
借助數值計算與電腦運算得到方程式解,重複計算方程式的解即可得每一接觸點的位置。
以漸開線與圓為例模擬兩凸輪間的運動,最後以橢圓與平板為例,實際模擬兩凸輪間的往復運動。
In this work, we introduce a numerical method to compute the kinematics of the contacting point of two cams.
Regard mesh of two cams as point contact of two planar curves then express the coordinates of planar curve by parametric curve and Rigid-Body Motion.
Since there are the same coordinates and unit normal vectors at the contacting point on two curves,
the problem of the mesh of two planar curves is transformed into an ordinary differential equation by vector analysis.
We have the solution to the equation by numerical method and computer calculation.
After repeating the way of computing the solution to the equation,
we have the contacting points.
Simulate the mesh of an involute and a circle by two planar curves.
In the end, simulate the mesh of an ellipse and a table for the reciprocating motion of two cams.
[1]張充鑫,”機動學”,全華科技圖書,6.1-6.9,2005.
[2]Robert L.Norton 著. 謝慶雄 譯,”機動學”,雙葉書廊有限公司,8.0-8.8.
[3]林丕靜,”數值分析”,亞格致圖書公司(1995),426-434.
[4]W. Allen Smith,”Elementary Numerical Analysis”,USA,p. 318-352,1979.
[5]郭育里,”齒印接觸分析之數值方法”,國立成功大學應用數學所論文,民國97年7月.
[6]吳明勳,”機構學”,全華科技圖書(2005),136-141.
校內:2022-01-01公開