| 研究生: |
洪有政 Hung, Yu-Cheng |
|---|---|
| 論文名稱: |
多孔矽基板上成長矽/矽鍺及矽/矽鍺碳異質接面紅外線光感測元件之研究 Studies of Si/SiGe and Si/SiGeC Heterojunctions on Porous Silicon Substrates for Infrared Light Detecting Applications |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 多孔矽 、矽鍺 、光感測元件 、紅外線 、矽鍺碳 |
| 外文關鍵詞: | porous silicon, SiGe, detector, infrared, SiGeC |
| 相關次數: | 點閱:80 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文描述於N(100)矽基板上調變不同蝕刻參數形成不同孔隙率的多孔矽基板。利用多孔矽結構增加光線吸收面積與偏移吸收峰值,來發展高性能紅外線光感測元件。其中多孔矽層是以電化學陽極化蝕刻法(Electrochemical Anodization Method)製作而成。然後於其上再以快速升溫化學氣相沉積系統(RTCVD)成長矽鍺及矽鍺碳薄膜。並利用FE-SEM、AFM觀察量測薄膜表面狀態,使用FTIR、Raman spectra、XRD等儀器分析薄膜的結晶品質。
利用矽/矽鍺/多孔矽及矽/矽鍺碳/多孔矽結構製作的紅外線光感測元件其主要吸收層在矽鍺、矽鍺碳及多孔矽層,吾人量測元件在未照光與照光下的I-V特性、光暗電流比等。當矽/矽鍺/多孔矽元件之孔隙率為55%時,在-12V偏壓下,以波長700nm、5mW之雷射光照射下得到最大光暗電流比為2.13×105;同樣條件下,矽/矽鍺碳/多孔矽元件的最大光/暗電流比為1.75×106是矽/矽鍺/多孔矽元件的8.23倍。相較已發表的成長於單晶矽基板上的非晶矽鍺紅外線感測元件,光電流有著近10倍的提升[38],也就是說成長於多孔矽基板上的矽/矽鍺碳/多孔矽元件,具有較佳的光感測特性與靈敏度,因此也更適合應用於紅外線光感測。
In this thesis, we used various etching conditions to prepare porous-Si (PS) layers on N-type (100) silicon substrate. The layer with a porous structure can increase photo-absorbing area, and shift the peak of absorbing wavelength, thus improving the flexibility for designing a high performance photo-detecting device. The PS layers were formed on silicon substrates using an electrochemical anodization etching method. To develop Si/SiGe/PS and Si/SiGeC/PS infrared detecting devices, the SiGe、SiGeC films were deposited on the top of the PS layer by a RTCVD system firstly. Then the physical and electrical characteristics of the films were investigated by FE-SEM, AFM, FTIR, Raman spectrum, XRD, and to optimize the depositing parameters.
We measured I-V characteristics and calculated the photo to dark current ratio of the devices with and without the illumination of an infrared light (IR) source with λ=700nm. The Si/SiGe/PS device with porosity 55%, at -12V bias, and under 5mW laser diode illuminated, the maximum photo to dark current ratio is 2.13×105. In contrast, under the same conditions, its counterpart the Si/SiGeC/PS device with porosity 55% has the maximum photo to dark current ratio of 1.75×106, which is 8.23 times higher than that the Si/SiGe/PS device. It is worthy to note, the photo current increases nearly 10 times, which is better than that reported amorphous silicon germanium infrared sensors on crystalline silicon substrates[38], thus evidencing the developed Si/SiGeC/PS device has better potential for IR detecting applications.
[1] T. Mitsuyu, S. Fujita,“InGaAsP/InP wavelength-selective heterojunction phototransistors”, IEEE Trans. Electron Devices, vol. ed-31, no. 6, pp. 812, 1984.
[2] A. Sasaki, K. Matsuda, Y. Kimura, and S. Fujita, “High-Current InGaAsP-lnP Phototransistors and Some Monolithic Optical Devices”, IEEE Trans. Electron Devices, vol. ed-29, no. 9, pp. 1832, 1984.
[3] A. St. Amour, C. W. Liu, and J. C. Sturm,“Defect-free band-edge photoluminescence and band gap measurement of pseudomorphic Si1-x-yGexCy alloy layers on Si (100)”, Appl. Phys. Lett., vol. 67, no. 26, pp. 3915-3917, 1995.
[4] P. Boucaud, C. Francis, F. H. Julien, J. M. Lourtioz, D. Bouchier, S. Bodnar, B. Lambert, and J. L. Regolini, “Band-edge and deep level photoluminescence of pseudomorphic Si1-x-yGexCy alloys”, Appl. Phys. Lett., vol. 64, no. 7, pp. 875-877, 1994.
[5] J. Kolodzey, F. Chen, B. A. Orner, D. Guerin, and S. Ismat Shah,“Energy band offsets of SiGeC heterojunctions”, Thin Solid Films, vol. 302, pp. 201-203, 1997.
[6] J. C. Bean,“Silicon-Based Semiconductor Heterostructures:Column IV Bandgap Engineering”, Proceedings of the IEEE, vol. 80, no. 4, pp. 571-588, 1992.
[7] H. Presting, H. Kibbel, M. Jaros, R. M. Turton, U. Menczigar, G. Abstreiter and H. G. Grimmeiss,“Ultrathin SimGen strained layer superlattices-a step towards Si optoelectronics”, Semiconductor Science and Technology, vol. 7, no. 9, pp. 1127-1148, 1992.
[8] S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson and D. L.Harame,“Heterojunction Bipolar Transistors Using Si-Ge Alloys”,IEEE Trans. Electron Devices, vol. 36, no. 10, pp.2043-2065, 1989.
[9] J. L. Regolini, F.Gisbert, G. Dolino,“Growth and charazterizati-characterization of strain-compensated Si1-x-yGexCy epitaxil layers”, Materials Letters, vol. 18, no. 1-2, pp. 57-60, 1993.
[10] J. L. Regolini, S. Bodnar, J. C. Oberlin, and F. Ferrieu,“Strain compensated heterostructures in the Si1–x–yGexCy ternary system”,J.Vac. Sci. Technol, vol 12, issue 4, pp. 1015-1019, 1994.
[11] L. A. Balagurov, S. C. Bayliss, D. G. Yarkin, S. Ya. Andrushin, V. S. Kasatochkin, A. F. Orlov, and E. A. Petrova,“Low noise photosensitive device structures based on porous silicon”, Solid-State Electronics, vol. 47, pp. 65-60, 2003.
[12] J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok,“Highly sensitive photodetector using porous silicon”, Appl. Phys. Lett., vol. 61, no. 4, pp. 459-461, 1992.
[13] S. K. Dhungel, J. Yoo, K. Kim, S. Ghosh, S. Jung, and J. Yi,“Study of electrical properties of oxidized porous silicon for back surface passivation of silicon solar cells”, Renewable Energy, vol. 33, pp. 282-285, 2008.
[14] P. Steiner, F. Kozlowski, and W. Lang,“Blue and Green Electroluminescence from a Porous Silicon Device”, IEEE Electron Device Lett, vol. 14, no. 7, pp. 317-319, 1993.
[15] R. J. Martin-Palma, J. M. Martinez-Duart , L. Li, and R. A. Levy,“Electrical behavior of double-sided metal/porous silicon structures for optoelectronic devices”, Materials Science and Engineering C, vol. 19, pp. 359-362, 2002.
[16] R. L. Smith, and S. D. Collins,“Porous silicon formation mechanisms”, J. Appl. Phys., vol. 71, no. 8, pp. R1-R22, 1992.
[17] E. V. Astrova, V. B. Voronkov, A. D. Remenyuk, V. B. Shuman, and V. A. Tolmachev,“Variation of the parameters and composition of thin films of porous silicon as a result of oxidation: ellipsometric studies”, Semiconductors, vol. 33, no. 10, pp. 1149-1155, 1999.
[18] L. Pavesi, and V. Mulloni,“All porous silicon microcavities: growth and physics”, Journal of Luminescence, vol. 80, pp. 43-52, 1999.
[19] A. Uhlir, Jr.,“Electrolytic Shaping of Germanium and Silicon”, Bell System Tech. J., vol. 35, pp. 333-347, 1956.
[20] G. C. John, and V. A. Singh,“Diffusion-induced nucleation model for the formation of porous silicon”, Physical Review B, vol. 52, no. 15, pp. 125-131, 1995.
[21] K. Imai, and S. Nakajima,“Full isolation technology by porous oxidized silicon and its application to LSIS”, International Electron Devices Meeting, vol. 27, pp. 376-379, 1981.
[22] L. T. Canham,“Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Appl. Phys. Lett., vol. 57, no. 10, pp. 1046-1048, 1990.
[23] V. Lehmann, and U. Gosele,“Porous silicon formation: A quantum wire effect”, Appl. Phys. Lett., vol. 58, no. 8, pp. 856-858, 1991.
[24] M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, “Microstructure and formation mechanism of porous silicon”, Appl. Phys. Lett., vol. 46, no. 1, pp. 86-88, 1985.
[25] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, “The formation of porous silicon by chemical stain etches”, J. Crystal Growth, vol. 75, no. 3, pp. 408-414, 1986.
[26] I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon”, Appl. Phys. Lett., vol. 46, no. 12, pp. 1133-1135, 1985.
[27] A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller,“Electroluminescence in the visible range during anodic oxidation of porous silicon films”, Appl. Phys. Lett., vol. 59, no. 15, pp. 304-306, 1991.
[28] T. L. Lin, L. Sadwick, K. L. Wang, Y. C. Kao, R. Hull, C. W. Nieh, D. N. Jamieson, and J. K. Liu, “Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon”, Appl. Phys. Lett., vol. 51, no. 11, pp. 814-816, 1987.
[29] Z. Liu, B. Q. Zong, Z. Lin, “Diamond growth on porous silicon by hot-filament chemical vapor deposition”, Thin Solid Films, vol. 254, pp. 3-6, 1995.
[30] L. W. Lai, H. Y. Lee, J. H. Cheng, and C. H. Lee, “Investigation of Laser-Assisted Microcrystalline SiGe Films Deposited at Low Temperature”, Journal of Electronic Materials, vol. 37, no. 2, pp. 167-171, 2008.
[31] D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2003-2004.
[32] A. Cuadras, B. Garrido, J. R. Morante, C. E. Hunt, and McD Robinson,“Thermal oxidation of Si1−x−yGexCy epitaxial layers characterized by Raman and infrared spectroscopies”, J.Vac. Sci. Technol, vol. 23, no. 1, pp. 5-10, 2005.
[33] C. T. Lee, J. H. Cheng, and H. Y. Lee,“Crystalline SiGe films grown on Si substrates using laser-assisted plasma-enhanced chemical vapor deposition at low temperature”, Appl. Phys. Lett., vol. 91, no. 091920, pp. 1-3, 2007.
[34] S. M. Sze, Physics of Semiconductor Devices, New York: Wiley, 1981.
[35] J. Webber, M. I. Alonso,“Near-band-gap photoluminescence of SiGe alloys”, Phys. Rev. B, vol. 40, no. 8, pp. 5683-5693, 1989.
[36] 潘俊成,“The fabrication and characterization of Silicon PIN photodiode”, 國立中央大學物理研究所碩士論文, 2000.
[37] “Knowledge Bridge”, Mar. 2003; http://nr.stpi.org.tw/ejournal/KB/kb9203_c.pdf.
[38] C. Y. Chen, J. J. Ho, Y. K. Fang, and S. F. Chen, “Performance Analysis and Development of High-speed pin Infrared Sensors Prepared on Crystalline Silicon Substrates”, Proceedings of SPIE , vol. 4416, pp. 305-310, 2001.