簡易檢索 / 詳目顯示

研究生: 吳輔庭
Wu, Fu-Ting
論文名稱: 封裝體立體堆疊結構之熱傳性能與疲勞壽命分析
The Analysis of the Thermal Characterization and Fatigue of Package-On-Package (POP) Assembly
指導教授: 吳俊煌
Wu, Gien-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 堆疊式構裝疲勞壽命POPPackage-On-Package有限元素法
外文關鍵詞: stacked package, fatigue, finite element method, FEM, POP, Package-On-Package
相關次數: 點閱:113下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 封裝體立體堆疊(Package On Package, POP)是成長最迅速的封裝技術之一,即利用測試好的封裝體(Package)在厚度方向透過回焊(reflow)的方式堆疊起來,形成三維系統級封裝(3D System in Package, 3D SiP)的封裝架構以達到高密度封裝與縮小封裝規模的目的,例如動態隨機存取記憶體(Dynamic Random Access Memory, DRAM)或靜態隨機存取記憶體(Static Random Access Memory, SRAM)的堆疊應用。
    本研究利用有限元素分析軟體ANSYS 建立底層可堆疊甚薄精細間距球柵陣列(Package Stackable Very Thin Fine Pitch BGA)疊合晶片級封裝(Chip Scale Package, CSP)有限單元分析模型,其中構裝體含有六個組件,分別為錫球(Solder Ball)、晶片(Chip)、封膠(Molding Compound)、基板(Substrate)、熱通孔(Thermal Via)、印刷電路板(Print Circuit Board, PCB),進行熱傳與熱應變模擬分析。
    熱傳分析方面,構裝體與外界初始溫度為50℃,在自然對流與強制對流的情況下,以Ellison熱對流理論為基礎模型建立數學公式,並且經由改變晶片瓦數,觀察其熱傳行為;熱應變分析方面,錫球材料的黏塑性特性以Anand模型模擬,成形樹脂材料的黏塑特性以Maxwell模型模擬,其他部分則以彈性體模擬,模擬構裝體承受-40℃到125℃熱循環負載下的變形行為,並研究改變材料參數對構裝體的影響,各別針對最大錫球等效應變量作分析,找出錫球最容易受到破壞的部位,最後再配合modified Coffin-Manson equation求其疲勞壽命。

    Package-On-Package(POP), one of the most growing technology of package, is a member of the System in the Package (Sip) family. It is constructed by stacking individually assembled and tested packages in a three-dimensional tower-like structure through solder joints to have higher packaging density and size shrinkage, such as Dynamic Random Access Memory(DRAM) or Static Random Access Memory (SRAM) stacking applications.
    This research uses three dimensional model simulation to analyze the thermal-mechanical and heat transfer behavior of a Package Stackable Very Thin Fine Pitch Ball Grid Array (PSVFBGA) stacked on top of a Chip Scale Package (CSP) by applying the finite element analysis of the commercial software ANSYS . The package body components have six parts, including solder ball, chip, molding compound, substrate, thermal via, and printed circuit board (PCB).
    For the heat transfer analysis, the beginning temperature of POP and surrounding area is 50℃. In case of the natural convection and force convection, the natural heat transfer coefficient and force heat transfer coefficient can be calculated by the Ellison equation, and then change the chip power to study the thermal behavior. For the analysis on the thermal-mechanical behavior, the solder ball is modeled using viscoplastic Anand's model, the viscoplastic behavior of the molding compound is simulated by the Maxwell model, the others simulated as linear elastic. In the finite element analysis, the transformation behavior of the package body was carried out under a -40 ℃ to 125 ℃ thermal cycling environment. At the same time, the maximum equivalent strain was calculated in order to find the weakness part of the assembly, and we can thus understand the influence on the strain field by changing material properties. Finally, the solder ball reliability was estimated by the widely accepted modified Coffin-Manson equation, and the thermo-mechanical behaviors of the solder ball were appropriately presented.

    中文摘要 I ABSTRACT III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 符號說明 XIV 第一章 緒論 1 1-1 前言 1 1-2 封裝技術的發展史 2 1-3 封裝體立體堆疊(PACKAGE-ON-PACKAGE, POP)簡介[5] 6 1-4 研究動機與目的 8 1-5 文獻回顧 8 1-6 本文架構 11 第二章 理論分析 18 2-1 彈性理論分析 18 2-2 非線性收歛準則[15] 22 2-2-1 直接疊代法 23 2-2-2 牛頓-瑞佛森法 24 2-3 黏彈材料力學模型[16] 26 2-3-1 高分子黏彈性質 26 2-3-2 麥斯威爾模型(Maxwell Model) 27 2-4 黏塑材料力學模型[16] 30 2-5 電子元件封裝之熱傳與散熱分析[7] 34 2-5-1 熱傳導與熱對流 34 2-6 低循環疲勞壽命[17] 36 第三章 模型建立與分析 44 3-1 建立封裝體分析模型 44 3-2 分析流程及材料設定 45 3-3 邊界條件 49 3-3-1 熱傳分析 49 3-3-2 熱應力分析 49 第四章 結果與討論分析 66 4-1 熱傳分析 66 4-2 熱應力分析 68 4-2-1 POP構裝體之等效塑性應變(von Mises plastic stress)分析 68 4-2-2 參數化分析 69 4-2-3 楊氏模數的影響 69 4-2-4 熱膨脹係數的影響 69 4-2-5 元件厚度的影響 70 第五章 結論 81 5-1 結論 81 5-2 未來展望 83 參考文獻 84 自述 88

    1. "PoP Design Guide", Application Note, October 2008.
    2. 邱美玲/譯, "先進半導體構裝用模封材料技術動向", 機械月刊第三十四卷第十期, P110-P122, October 2008.
    3. 王盟仁, 翁承誼, 楊學安, "三維立體堆疊封裝趨勢與發展", 封裝技術 專輯, P106-P115, December 2008.
    4. 范國威/譯, "封裝堆疊SiP技術~發現新開展的立體SiP技術", 封裝技術 專輯, P104-P117, November 2007.
    5. Moody Dreiza, Akito Yoshida, Jonathan Micksch, Lee Smith, "堆疊式封裝層疊(PoP)設計指南", 電子工程專輯, October 2005.
    6. Abhilash R. Menon, Saket Karajgikar, Dereje Agonafer, "Thermal Design Optimization of a Package On Package", 25th IEEE SEMI-THERM Symposium, 2009.
    7. Xiang Qiu, Jun Wang, "Study on Heat Dissipation in Package On Package (POP) ", 11th International Conference on Electronic Packaging Technology & High Density Packaging, 2010.
    8. Tong Hong Wang, Yi-Shao Lai*, Chang-Chi Lee, Ching-Chun Wang, "Board-level Reliability of Package-on-Package Stacking Assemblies Subjected to Coupled Power and Thermal Cycling Teste", 9th Electronics Packaging Technology Conference, 2007.
    9. Yuan Lin Tzeng, Nicholas Kao, Eason Chen, Jeng Yuan Lai, Yu Po Wang, C.S Hsiao "Warpage and Stress Characteristic Analtses on Package-on-Package (PoP) Structure", 9th Electronics Packaging Technology Conference 2007.
    10. Yi-Shao Lai*, Tong Hong Wang, Ching-Chun Wang, Chang-Lin Yeh, "Optimal Design in Enhancing Board-level Thermomechanical and Dorp Reliability of Package-on-Package Stacking Assembly", Electronics Packaging Technology Conference 2005.
    11. Chen Xiangyang, Zhou Dejian, "Modeling and reliability analysis of lead-free solder joints of bottom leaded plastic (BLP) package", Proceedings of HDP’06, 2006.
    12. 馬金汝,楊清旭, "新式堆疊封裝結構之熱傳模擬分析", 熱傳實驗室/集團研發中心, 日月光半導體股份有限公司.
    13. Wei Lin, Min Woo Lee, "PoP/CSP Warpage Evaluation and Viscoelastic Modeling", Electronic Components and Technology Conference, 2008.
    14. ANSYS 9.0 Online Reference.
    15. W.F. Chen, D.J. Han, "Plastic for structure engineers", Springer-Verlag, Hong Kong,1991.
    16. Masazumi Amagai, "Characterization of Chip Scale Package Material", Microelectronics Reliability, V39, 1368-1377, 1999.
    17. Solomon, H. D., "Fatigue of Solder. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 9(4):52-57, 1986.
    18. Kalyan Biswas, Shiguo Liu, Xiaowu Zhang, TC Chai, "Effects of detailed substrate modeling and solder layout design on the and level solder joint reliability for the large die FCBGA", IEEE, 2008.
    19. Yi-Ming Jen, Chih-Kai, Yun Fang, "Effect of Size of Lid-Substrate Adhesive on Reliability of Solder Balls in Thermally Enhanced Flip Chip PBGA Packages", IEEE, 2006.
    20. Desmond Y.R, Chong*, K.Y. Goh, R. Kapoor, Anthony Y.S. Sun, "Reliability Analysis for New Improved High Performance Flip Chip BGA Packages", IEEE, 2003.
    21. Kar Wei Shim, Wai Yew Lo, "Solder Fatigue Modeling of Flip-Chip Bumps in Molded Package", IEEE,2006.
    22. JEDEC Solid State Technology Association, "Temperature Cycling",JEDS22-A104-B, EIA/JEDEC, USA,2000.
    23. Morris Bowers, Yeong J. Lee, Bennett Joiner, Niranjan Vijayaragavan, "Thermal Characterization of Package-on-Package (POP) ", IEEE, 2009
    24. 吳子朋, "覆晶構裝體之可靠度分析", 碩士論文, 國立成功大學,2010.
    25. 郭廷鑫, "三維式晶片堆疊封裝於直通矽晶穿孔結構與銅導線之可靠度分析", 碩士論文, 國立清華大學,2010.
    26. 江國寧, "微電子系統封裝基礎理論與應用技術", 滄海書局,2006.
    27. 鐘文仁, 陳佑任, "IC封裝製程與CAE應用", 全華圖書股份有限公司,2010.
    28. Chao REN, Fei QIN, "Parametric Study of Warpage in Package-on-Package Manufacturing", IEEE,2009.
    29. Rahul Kapoor, Lim Beng Kuan, Liu Hao, "Package Design Optimization and Materials Selection for Stack Die BGA Package", IEEE,2004,
    30. 吳偉琳, "堆疊式封裝的助焊技術", 電子月刊第十四卷第十期,2008.

    下載圖示 校內:立即公開
    校外:2014-08-30公開
    QR CODE