簡易檢索 / 詳目顯示

研究生: 陳國瑋
Chen, Guo-Wei
論文名稱: 動力調控模組應用於車輛電控差速系統
Power Regulation Module Applied to Vehicle Electronically Controlled Differential Systems
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 62
中文關鍵詞: 車輛電控差速系統電控式無段變速(E-CVT)行星齒輪協同運動控制動力調控切換策略
外文關鍵詞: electronically controlled differential, electronically controlled continuously variable transmission (E-CVT), synchronized motion control, planetary gearbox
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對車輛電控差速系統之應用,提出一創新動力傳動模組及其運動控制系統的設計,有別於傳統機械結構需分別以變速箱與差速器實現車輛變速與差速功能,透過整合電控無段變速(E-CVT)及電控差速(E-Differential)之功能,作為新型動力傳動系統技術研究的關鍵核心。在此創新的動力傳動模組應用中,以行星齒輪系為主要傳動元件,藉由其雙輸入單輸出的傳動結構特性,搭配一組主動力馬達與兩組輔助馬達實現所設計的動力切換策略,依據輸入踏板行程以及方向盤命令,調控馬達的輔助動力進行速度耦合,使輸出端後輪符合車輛行駛之運動行為,並應用於不同的擬真車輛操作情境。考量真實路況環境中的負載變動影響,本論文採用全閉環的協同運動控制架構,確保在兩後輪受到不平衡外擾的情況下,仍然可以維持預期的運動行為行駛,並透過所建立的車輛虛實整合實驗平台,以輸出端的負載馬達模擬動態路況負載,驗證本論文所提出之創新動力傳動模組及其運動控制系統設計的可行性。

    This thesis proposes an innovative power transmission module and motion control system design applied to electronically controlled vehicle differential systems. In traditional mechanical systems, gearboxes and differentials are required to attain variable speed and differential capabilities in the vehicle. In this thesis, a novel power transmission module which integrates electronically controlled continuously variable transmission (E-CVT) and electronically controlled differential (E-Differential) capabilities is proposed. Moreover, a transmission system incorporating planetary gearboxes and electric motors is adopted. Planetary gearboxes are appealing due to their 2-input/ 1-output port characteristic, which enables a power regulation strategy to be realized with electronically controlled motors. User input command information is obtained from the pedal and steering wheel while also considering environmental load variations that will be encountered in reality by the proposed power transmission module. A full closed-loop synchronized motion control is then designed to ensure the rear-wheel output speeds will be maintained even when affected by unbalanced external disturbances. Furthermore, different power regulation strategy modes are employed in the control loop in order to react to different driving scenarios such that the system exhibits variable speed and differential capabilities. Consequently, a vehicle virtual reality integration experiment platform is created to verify the feasibility of the proposed power transmission module and its motion control system design.

    摘要 I 致謝 XVII 目錄 XVIII 表目錄 XXI 圖目錄 XXII 符號表 XXIV 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景與文獻回顧 2 1.3 研究目的 5 1.4 本文架構 5 第二章 行星齒輪系變速及差速傳動特性分析 7 2.1 行星齒輪傳動架構分析 7 2.1.1 行星齒輪之運動學模型分析 7 2.1.2 行星齒輪之動態系統建模 9 2.1.3 雙行星齒輪之差速應用及配置選擇 11 2.2 機械式差速器模型推導與分析 16 第三章 動力調控策略及協同運動控制設計 21 3.1 動力調控策略及輔助命令設計 21 3.1.1 動力調控模式切換設計 21 3.1.2 半閉環電控差速控制架構 23 3.2 全閉環協同運動控制 27 3.2.1 協同運動比例 28 3.2.2 協同運動誤差 29 3.2.3 基於協同運動之兩輪差速 31 3.3 協同運動控制架構 33 3.4 實驗架構設計 37 3.4.1 伺服馬達參數系統識別 38 3.4.2 電控差速系統虛擬負載動態模擬建立 39 第四章 實驗結果與討論 41 4.1 實驗硬體架構 41 4.1.1 電控差速系統動力驅動模組 42 4.1.2 硬體在環迴路設備 44 4.1.3 控制及訊號擷取系統 45 4.1.4 車輛動態模擬軟體CarSim 46 4.1.5 虛實整合車輛即時運算平台 47 4.2 電控差速系統實驗結果與驗證 48 4.2.1 真實駕駛行為及動力調控策略之驗證 48 4.2.2 協同運動控制架構驗證 54 第五章 結論與未來工作 58 5.1 結論 58 5.2 未來建議 59 參考文獻 60

    [1] M. Yildirim, M. Polat, H. Kurum, “A survey on comparison of electric motor types and drives used for electric vehicles,” IEEE 16th International Power Electronics and Motion Control Conference and Exposition (PEMC), pp. 218-223, 2014.
    [2] R. N. Tuncay, O. Ustun, M. Yilmaz, C. Gokce, U. Karakaya, “Design and implementation of an electric drive system for in-wheel motor electric vehicle applications,” IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-6, 2011.
    [3] M. Hu, J. Zeng, S. Xu, C. Fu, D. Qin, “Efficiency study of a dual-motor coupling EV powertrain,” IEEE Transactions on Vehicular Technology, vol. 64, 2014.
    [4] 張羅曦,「電動車用集成式驅動系統的研究」,碩士論文,中國武漢理工大學車輛工程,2010。
    [5] S. Liu, and B. Paden, “A survey of today’s CVT controls,” IEEE Conference on Decision and Control, pp. 4738-4743, 1997.
    [6] S. Prakash, and T. Hofman, “Clamping strategies for belt-type continuously variable transmission: an overview,” IEEE Vehicle Power and Propulsion Conference, pp. 1-6, 2017.
    [7] 黃靖雄,現代車輛底盤,全華,1995。
    [8] Haas, Ronald H., and Richard C. Manwaring, “Development of a limited slip differential,” SAE Transactions, vol. 80, pp. 2175-2193, 1971.
    [9] Kinsey, J, “The advantages of an electronically controlled limited slip differential,” SAE Technical Paper, 2004.
    [10] Kaoru Sawase, Yoshiaki Sano, “Application of active yaw control to vehicle dynamics by utilizing driving/breaking force,” JSAE, Vol. 20, pp. 289-295, 1999.
    [11] A. Kahraman, “Free torsional vibration characteristics of compound planetary gear sets,” Mechanism and machine theory, vol. 36, no. 8, pp. 953-971, 2001.
    [12] 李建宏,「行星齒輪結構之電控無段變速器設計與其應用」,碩士論文,國立成功大學機械工程研究所,2015。
    [13] J. H. Wang, D. T. Qin and Z. K. Xing, “Optimization design of system parameters of the gear transmission of wind turbine based on dynamics and reliability,” Chinese Journal of Mechanical Engineering, vol. 7, 2008.
    [14] M. C. Tsai, C. C. Huang, and B. J. Lin, “Kinematic analysis of planetary gear systems using block diagrams,” ASME Journal of Mechanical Design, vol. 132, pp. 1-10, 2010.
    [15] 王俊欽,「電助自行車之動力輔助模式切換策略設計」,碩士論文,國立成功大學機械工程研究所,2018。
    [16] K. Mimura, “Differential gear,” ed: US Patent 6120407, 2000.
    [17] J Wojnarowski, A Lidwin, “The application of signal flow graphs-the kinematic analysis of planetary gear trains,” Mechanism and machine theory, vol. 10, pp. 17-31, 1975.
    [18] J Wojnarowski, “The graph method of determining the loads in complex gear trains,” Mechanism and machine theory, vol. 11, pp. 103-121, 1976.
    [19] https://www.lawbank.com.tw/treatise/lawrela.aspx?lsid=FL012455&ld
    ate=20040826&lno=90,93,94,101,112,140
    [20] Guillespie Thomas D., “Fundamentals of vehicle dynamics,” Society of Automotive Engineers SAE, 1992.
    [21] 羅浚彬,「直驅式電動汽車雙馬達之電流分佈控制」,碩士論文,國立台灣大學機械工程學系,2003。
    [22] M.C. Tsai and P.W. Hsueh, “Synchronized motion control for 2D joystick-based electric wheelchair driven by two wheel motors,” The IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 702-707, 2012.
    [23] Y. E. Zhao, J. W. Zhang, and X. Q. Guan, “Modelling and simulation of the electronic differential system for an electric vehicle with two-motor-wheel drive,” International Journal of Vehicle Systems Modelling and Testing, vol. 4, no. 1-2, pp. 1209-1214, 2009.
    [24] G. Ellis, Observers in control systems: a practical guide, Elsevier, 2002.
    [25] S. Butterworth, “On the theory of filter amplifiers,” Wireless Engineer, vol. 7, no. 6, pp. 536-541, 1930.
    [26] Mechanical Simulation. Real-time Hardware in the Loop. May 2014. Re-trieved from https://www.youtube.com/watch?v=IWrV23y2AIo.
    [27] 王科霖,「力感阻抗控制應用於電子踏板及車輛防撞策略」,碩士論文,國立成功大學機械工程研究所,2017。

    無法下載圖示 校內:2025-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE