| 研究生: |
阮樂明 Nguyen, Le-Minh |
|---|---|
| 論文名稱: |
快速 Li+傳導的網絡化固態高分子電解質組成高穩定性鋰金屬電池 Networked Solid-State Polymer Electrolyte with Fast Li+ Conducting for High-Stability Lithium Metal Batteries |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 全固態電池 、鋰金屬電池 、網絡化固態聚合物電解質 、聚合物鹽 、固體聚合物電解質 |
| 外文關鍵詞: | All-solid-state batteries, Lithium metal batteries, networked solid-state polymer electrolyte, Polymer-in-salt, Solid polymer electrolyte |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Larcher, D. and Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 2015, 7, 19–29.
[2] Tarascon, J.-M. and Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2011, 414, 171–179.
[3] Zhou, L. Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews 2005, 9, 395–408.
[4] Björklund, E. , Brandell, D. , Hahlin, M. , Edström, K. , and Younesi, R. How the negative electrode influences interfacial and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathodes in Li-ion batteries. Journal of The Electrochemical Society 2017, 164, A3054.
[5] Pacala, S. and Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. science 2004, 305, 968–972.
[6] Nitta, N. , Wu, F. , Lee, J. T. , and Yushin, G. Li-ion battery materials: present and future. Materials today 2015, 18, 252–264.
[7] Bresser, D. , Hosoi, K. , Howell, D. , Li, H. , Zeisel, H. , Amine, K. , and Passerini, S. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. Journal of Power Sources 2018, 382, 176–178.
[8] Goodenough, J. B. and Park, K.-S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135, 1167–1176.
[9] AL-Shroofy, M. N. Understanding and Improving Manufacturing Processes for Making Lithium-Ion Battery Electrodes. University of Kentucky 2017
[10] Aravindan, V. , Gnanaraj, J. , Lee, Y.-S. , and Madhavi, S. LiMnPO4–A next generation cathode material for lithium-ion batteries. Journal of Materials Chemistry A 2013, 1, 3518–3539.
[11] Cho, J. , Kim, Y. , Kim, B. , Lee, J. , and Park, B. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angewandte Chemie International Edition 2003, 42, 1618–1621.
[12] Noh, H.-J. , Youn, S. , Yoon, C. S. , and Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources 2013, 233, 121–130.
[13] Myung, S.-T. , Maglia, F. , Park, K.-J. , Yoon, C. S. , Lamp, P. , Kim, S.-J. , and Sun, Y.-K. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Letters 2017, 2, 196–223.
[14] Manthiram, A. , Chemelewski, K. , and Lee, E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy & Environmental Science 2014, 7, 1339–1350.
[15] Liu, D. , Zhu, W. , Trottier, J. , Gagnon, C. , Barray, F. , Guerfi, A. , Mauger, A. , Groult, H. , Julien, C. M. , and Goodenough, J. B. Spinel materials for high-voltage cathodes in Li-ion batteries. Rsc Advances 2014, 4, 154–167.
[16] Yamada, A. , Chung, S.-C. , and Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. Journal of the electrochemical society 2001, 148, A224.
[17] Doughty, D. H. and Roth, E. P. A general discussion of Li ion battery safety. The Electrochemical Society Interface 2012, 21, 37.
[18] Xu, B. , Qian, D. , Wang, Z. , and Meng, Y. S. Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports 2012, 73, 51–65.
[19] Pasquier, A. Du , Plitz, I. , Menocal, S. , and Amatucci, G. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. Journal of power sources 2003, 115, 171–178.
[20] Rossen, E. , Jones, C. D. W. , and Dahn, J. R. Structure and electrochemistry of LixMnyNi1− yO2. Solid State Ionics 1992, 57, 311–318.
[21] Shaju, K. M. and Bruce, P. G. Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A High‐Power and High‐Energy Cathode for Rechargeable Lithium Batteries. Advanced Materials 2006, 18, 2330–2334.
[22] Kaskhedikar, N. A. and Maier, J. Lithium storage in carbon nanostructures. Advanced Materials 2009, 21, 2664–2680.
[23] Colin, J.-F. , Godbole, V. , and Novák, P. In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochemistry communications 2010, 12, 804–807.
[24] Zaghib, K. , Dontigny, M. , Guerfi, A. , Charest, P. , Rodrigues, I. , Mauger, A. , and Julien, C. M. Safe and fast-charging Li-ion battery with long shelf life for power applications. Journal of power sources 2011, 196, 3949–3954.
[25] Obrovac, M. N. and Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chemical reviews 2014, 114, 11444–11502.
[26] Park, C.-M. , Kim, J.-H. , Kim, H. , and Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 2010, 39, 3115–3141.
[27] Huggins, R. A. Lithium alloy negative electrodes. Journal of Power Sources 1999, 81, 13–19.
[28] Beaulieu, L. Y. , Eberman, K. W. , Turner, R. L. , Krause, L. J. , and Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochemical and Solid-State Letters 2001, 4, A137.
[29] Abraham, D. P. , Furczon, M. M. , Kang, S.-H. , Dees, D. W. , and Jansen, A. N. Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells. Journal of Power Sources 2008, 180, 612–620.
[30] Chen, Z. , Ren, Y. , Jansen, A. N. , Lin, C. , Weng, W. , and Amine, K. New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nature communications 2013, 4, 1–8.
[31] Besenhard, J. O. , Winter, M. , Yang, J. , and Biberacher, W. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources 1995, 54, 228–231.
[32] Fong, R. , Sacken, U. Von , and Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of The Electrochemical Society 1990, 137, 2009.
[33] Yang, C. R. , Wang, Y. Y. , and Wan, C. C. Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. Journal of power sources 1998, 72, 66–70.
[34] Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104, 4303–4418.
[35] Zhang, Z. , Shao, Y. , Lotsch, B. , Hu, Y.-S. , Li, H. , Janek, J. , Nazar, L. F. , Nan, C.-W. , Maier, J. , and Armand, M. New horizons for inorganic solid state ion conductors. Energy & Environmental Science 2018, 11, 1945–1976.
[36] Arbi, K. , Rojo, J. M. , and Sanz, J. Lithium mobility in titanium based Nasicon Li1+ xTi2− xAlx (PO4) 3 and LiTi2− x Zrx (PO4) 3 materials followed by NMR and impedance spectroscopy. Journal of the European Ceramic Society 2007, 27, 4215–4218.
[37] Kumar, B. , Thomas, D. , and Kumar, J. Space-charge-mediated superionic transport in lithium Ion conducting glass–ceramics. Journal of The Electrochemical Society 2009, 156, A506.
[38] Murugan, R. , Thangadurai, V. , and Weppner, W. Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition 2007, 46, 7778–7781.
[39] Li, Y. , Han, J.-T. , Wang, C.-A. , Xie, H. , and Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry 2012, 22, 15357–15361.
[40] Kamaya, N. , Homma, K. , Yamakawa, Y. , Hirayama, M. , Kanno, R. , Yonemura, M. , Kamiyama, T. , Kato, Y. , Hama, S. , and Kawamoto, K. A lithium superionic conductor. Nature materials 2011, 10, 682–686.
[41] Inaguma, Y. , Liquan, C. , Itoh, M. , Nakamura, T. , Uchida, T. , Ikuta, H. , and Wakihara, M. High ionic conductivity in lithium lanthanum titanate. Solid State Communications 1993, 86, 689–693.
[42] Seino, Y. , Ota, T. , Takada, K. , Hayashi, A. , and Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy & Environmental Science 2014, 7, 627–631.
[43] Zhang, J. , Ma, C. , Liu, J. , Chen, L. , Pan, A. , and Wei, W. Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. Journal of Membrane Science 2016, 509, 138–148.
[44] Lu, Q. , He, Y. , Yu, Q. , Li, B. , Kaneti, Y. V. , Yao, Y. , Kang, F. , and Yang, Q. Dendrite‐free, high‐rate, long‐life lithium metal batteries with a 3D cross‐linked network polymer electrolyte. Advanced Materials 2017, 29, 1604460.
[45] Shim, J. , Kim, D.-G. , Lee, J. H. , Baik, J. H. , and Lee, J.-C. Synthesis and properties of organic/inorganic hybrid branched-graft copolymers and their application to solid-state electrolytes for high-temperature lithium-ion batteries. Polymer Chemistry 2014, 5, 3432–3442.
[46] Shim, J. , Kim, D.-G. , Kim, H. J. , Lee, J. H. , and Lee, J.-C. Polymer composite electrolytes having core–shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries. ACS applied materials & interfaces 2015, 7, 7690–7701.
[47] Pan, Q. , Barbash, D. , Smith, D. M. , Qi, H. , Gleeson, S. E. , and Li, C. Y. Correlating Electrode–Electrolyte Interface and Battery Performance in Hybrid Solid Polymer Electrolyte‐Based Lithium Metal Batteries. Advanced Energy Materials 2017, 7, 1701231.
[48] Liu, W. , Song, M. , Kong, B. , and Cui, Y. Flexible and stretchable energy storage: recent advances and future perspectives. Advanced materials 2017, 29, 1603436.
[49] Rogers, J. A. , Someya, T. , and Huang, Y. Materials and mechanics for stretchable electronics. science 2010, 327, 1603–1607.
[50] Chang, J. , Huang, Q. , Gao, Y. , and Zheng, Z. Pathways of Developing High‐Energy‐Density Flexible Lithium Batteries (Adv. Mater. 46/2021). Advanced Materials 2021, 33, 2170363.
[51] Weber, R. , Genovese, M. , Louli, A. J. , Hames, S. , Martin, C. , Hill, I. G. , and Dahn, J. R. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4, 683–689.
[52] Chen, S. , Wen, K. , Fan, J. , Bando, Y. , and Golberg, D. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A 2018, 6, 11631–11663.
[53] Etacheri, V. , Marom, R. , Elazari, R. , Salitra, G. , and Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4, 3243–3262.
[54] Zhao, Y. , Wang, L. , Zhou, Y. , Liang, Z. , Tavajohi, N. , Li, B. , and Li, T. Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li‐Based Rechargeable Batteries. Advanced Science 2021, 8, 2003675.
[55] Chen, X. , Zhao, B. , Yan, C. , and Zhang, Q. Review on Li deposition in working batteries: from nucleation to early growth. Advanced Materials 2021, 33, 2004128.
[56] Wen, X. , Zeng, Q. , Guan, J. , Wen, W. , Chen, P. , Li, Z. , Liu, Y. , Chen, A. , Liu, X. , and Liu, W. 3D structural lithium alginate-based gel polymer electrolytes with superior high-rate long cycling performance for high-energy lithium metal batteries. Journal of Materials Chemistry A 2022, 10, 707–718.
[57] Vijayakumar, V. , Anothumakkool, B. , Kurungot, S. , Winter, M. , and Nair, J. R. In situ polymerization process: an essential design tool for lithium polymer batteries. Energy & Environmental Science 2021, 14, 2708–2788.
[58] Cai, X. , Ding, J. , Chi, Z. , Wang, W. , Wang, D. , and Wang, G. Rearrangement of Ion Transport Path on Nano-Cross-linker for All-Solid-State Electrolyte with High Room Temperature Ionic Conductivity. ACS nano 2021, 15, 20489–20503.
[59] Guzmán‐González, G. , Vauthier, S. , Alvarez‐Tirado, M. , Cotte, S. , Castro, L. , Guéguen, A. , Casado, N. , and Mecerreyes, D. Single‐Ion Lithium Conducting Polymers with High Ionic Conductivity Based on Borate Pendant Groups. Angewandte Chemie 2022, 134, e202114024.
[60] Nguyen, H. T. T. , Nguyen, D. H. , Zhang, Q.-C. , Lee, Y.-L. , Jan, J.-S. , Chiu, C.-C. , and Teng, H. A scaffold membrane of solid polymer electrolytes for realizing high-stability and dendrite-free lithium-metal batteries. Journal of Materials Chemistry A 2021, 9, 25408–25417.
[61] Pham, M.-N. , Subramani, R. , Lin, Y.-H. , Lee, Y.-L. , Jan, J.-S. , Chiu, C.-C. , and Teng, H. Acylamino-functionalized crosslinker to synthesize all-solid-state polymer electrolytes for high-stability lithium batteries. Chemical Engineering Journal 2022, 430, 132948.
[62] Duan, H. , Yin, Y.-X. , Zeng, X.-X. , Li, J.-Y. , Shi, J.-L. , Shi, Y. , Wen, R. , Guo, Y.-G. , and Wan, L.-J. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Materials 2018, 10, 85–91.
[63] Kim, S. , Mong, A. Le , and Kim, D. Accelerated ion conduction by co-grafting of poly (ethylene glycol) and nitrile-terminated ionic liquid on poly (arylene ether sulfone) for solid electrolyte membranes for lithium ion battery. Journal of Power Sources 2022, 529, 231255.
[64] Cui, Y. , Wan, J. , Ye, Y. , Liu, K. , Chou, L.-Y. , and Cui, Y. A fireproof, lightweight, polymer–polymer solid-state electrolyte for safe lithium batteries. Nano letters 2020, 20, 1686–1692.
[65] Seo, J. , Lee, G. , Hur, J. , Sung, M. , Seo, J. , and Kim, D. Mechanically Interlocked Polymer Electrolyte with Built‐In Fast Molecular Shuttles for All‐Solid‐State Lithium Batteries. Advanced Energy Materials 2021, 11, 2102583.
[66] Jiang, H. , Han, X. , Du, X. , Chen, Z. , Lu, C. , Li, X. , Zhang, H. , Zhao, J. , Han, P. , and Cui, G. A PF6−‐Permselective Polymer Electrolyte with Anion Solvation Regulation Enabling Long‐Cycle Dual‐Ion Battery. Advanced Materials 2022, 34, 2108665.
[67] Kimura, K. , Motomatsu, J. , and Tominaga, Y. Correlation between solvation structure and ion-conductive behavior of concentrated poly (ethylene carbonate)-based electrolytes. The Journal of Physical Chemistry C 2016, 120, 12385–12391.
[68] Gao, H. , Grundish, N. S. , Zhao, Y. , Zhou, A. , and Goodenough, J. B. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries. Energy Material Advances 2021, 2021
[69] Xu, S. , Sun, Z. , Sun, C. , Li, F. , Chen, K. , Zhang, Z. , Hou, G. , Cheng, H. , and Li, F. Homogeneous and fast ion conduction of PEO‐based solid‐state electrolyte at low temperature. Advanced Functional Materials 2020, 30, 2007172.
[70] Liu, W. , Yi, C. , Li, L. , Liu, S. , Gui, Q. , Ba, D. , Li, Y. , Peng, D. , and Liu, J. Designing polymer‐in‐salt electrolyte and fully infiltrated 3D electrode for integrated solid‐state lithium batteries. Angewandte Chemie 2021, 133, 13041–13050.
[71] Wu, B. , Wang, L. , Li, Z. , Zhao, M. , Chen, K. , Liu, S. , Pu, Y. , and Li, J. Performance of “polymer-in-salt” electrolyte PAN-LiTFSI enhanced by graphene oxide filler. Journal of the Electrochemical Society 2016, 163, A2248.
[72] Zhao, Y. , Bai, Y. , Bai, Y. , An, M. , Chen, G. , Li, W. , Li, C. , and Zhou, Y. A rational design of solid polymer electrolyte with high salt concentration for lithium battery. Journal of Power Sources 2018, 407, 23–30.
[73] Li, H. , Du, Y. , Wu, X. , Xie, J. , and Lian, F. Developing “Polymer‐in‐Salt” High Voltage Electrolyte Based on Composite Lithium Salts for Solid‐State Li Metal Batteries. Advanced Functional Materials 2021, 31, 2103049.
[74] Wang, S.-H. , Lin, Y.-Y. , Teng, C.-Y. , Chen, Y.-M. , Kuo, P.-L. , Lee, Y.-L. , Hsieh, C.-T. , and Teng, H. Immobilization of anions on polymer matrices for gel electrolytes with high conductivity and stability in lithium ion batteries. ACS Applied Materials & Interfaces 2016, 8, 14776–14787.
[75] Hsu, S.-T. , Tran, B. T. , Subramani, R. , Nguyen, H. T. T. , Rajamani, A. , Lee, M.-Y. , Hou, S.-S. , Lee, Y.-L. , and Teng, H. Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. Journal of Power Sources 2020, 449, 227518.
[76] Subramani, R. , Pham, M.-N. , Lin, Y.-H. , Hsieh, C.-T. , Lee, Y.-L. , Jan, J.-S. , Chiu, C.-C. , and Teng, H. Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries. Chemical Engineering Journal 2022, 431, 133442.
[77] Cheng, X. , Zhang, R. , Zhao, C. , Wei, F. , Zhang, J. , and Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Advanced science 2016, 3, 1500213.
[78] Wang, D. , Zhang, W. , Zheng, W. , Cui, X. , Rojo, T. , and Zhang, Q. Towards high‐safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Advanced Science 2017, 4, 1600168.
[79] Zhang, H. , Liu, C. , Zheng, L. , Xu, F. , Feng, W. , Li, H. , Huang, X. , Armand, M. , Nie, J. , and Zhou, Z. Lithium bis (fluorosulfonyl) imide/poly (ethylene oxide) polymer electrolyte. Electrochimica Acta 2014, 133, 529–538.
[80] Zhang, H. , Feng, W. , Nie, J. , and Zhou, Z. Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery. Journal of Fluorine Chemistry 2015, 174, 49–61.
[81] Yamada, Y. , Yaegashi, M. , Abe, T. , and Yamada, A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chemical Communications 2013, 49, 11194–11196.
[82] Yamada, Y. and Yamada, A. Superconcentrated electrolytes for lithium batteries. Journal of The Electrochemical Society 2015, 162, A2406.
[83] Li, Y. , Ding, F. , Xu, Z. , Sang, L. , Ren, L. , Ni, W. , and Liu, X. Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte. Journal of Power Sources 2018, 397, 95–101.
[84] Wu, H. , Gao, P. , Jia, H. , Zou, L. , Zhang, L. , Cao, X. , Engelhard, M. H. , Bowden, M. E. , Ding, M. S. , and Hu, J. A polymer-in-salt electrolyte with enhanced oxidative stability for lithium metal polymer batteries. ACS Applied Materials & Interfaces 2021, 13, 31583–31593.
[85] Stuart, B. H. Infrared spectroscopy: fundamentals and applications. John Wiley & Sons: 2004.
[86] Chen, B. , Xu, Q. , Huang, Z. , Zhao, Y. , Chen, S. , and Xu, X. One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. Journal of Power Sources 2016, 331, 322–331.
[87] Chen, S. , Wang, J. , Wei, Z. , Zhang, Z. , Deng, Y. , Yao, X. , and Xu, X. One-pot synthesis of crosslinked polymer electrolyte beyond 5V oxidation potential for all-solid-state lithium battery. Journal of Power Sources 2019, 431, 1–7.
[88] Kerner, M. , Plylahan, N. , Scheers, J. , and Johansson, P. Thermal stability and decomposition of lithium bis (fluorosulfonyl) imide (LiFSI) salts. Rsc Advances 2016, 6, 23327–23334.
[89] Ahmed, F. , Rahman, M. M. , Sutradhar, S. C. , Lopa, N. S. , Ryu, T. , Yoon, S. , Choi, I. , Lee, Y. , and Kim, W. Synthesis and electrochemical performance of an imidazolium based Li salt as electrolyte with Li fluorinated sulfonylimides as additives for Li-Ion batteries. Electrochimica Acta 2019, 302, 161–168.
[90] Zhang, M. , Becking, J. , Stan, M. C. , Lenoch, A. , Bieker, P. , Kolek, M. , and Winter, M. Wetting Phenomena and their Effect on the Electrochemical Performance of Surface‐Tailored Lithium Metal Electrodes in Contact with Cross‐linked Polymeric Electrolytes. Angewandte Chemie International Edition 2020, 59, 17145–17153.
[91] Wang, Q. , Cui, Z. , Zhou, Q. , Shangguan, X. , Du, X. , Dong, S. , Qiao, L. , Huang, S. , Liu, X. , and Tang, K. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries. Energy Storage Materials 2020, 25, 756–763.
[92] Tian, L. , Liu, Y. , Su, Z. , Cao, Y. , Zhang, W. , Yi, S. , Zhang, Y. , Niu, B. , Dong, P. , and Long, D. A lithiated organic nanofiber-reinforced composite polymer electrolyte enabling Li-ion conduction highways for solid-state lithium metal batteries. Journal of Materials Chemistry A 2021, 9, 23882–23890.
[93] Chen, L. , Li, W. , Fan, L. , Nan, C. , and Zhang, Q. Intercalated electrolyte with high transference number for dendrite‐free solid‐state lithium batteries. Advanced Functional Materials 2019, 29, 1901047.
[94] Liu, W. , Liu, N. , Sun, J. , Hsu, P.-C. , Li, Y. , Lee, H.-W. , and Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano letters 2015, 15, 2740–2745.
[95] Zhou, D. , He, Y. , Liu, R. , Liu, M. , Du, H. , Li, B. , Cai, Q. , Yang, Q. , and Kang, F. In situ synthesis of a hierarchical all‐solid‐state electrolyte based on nitrile materials for high‐performance lithium‐ion batteries. Advanced Energy Materials 2015, 5, 1500353.
[96] Yoon, H. , Best, A. S. , Forsyth, M. , MacFarlane, D. R. , and Howlett, P. C. Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis (fluorosulfonyl) imide based ionic liquid electrolytes. Physical Chemistry Chemical Physics 2015, 17, 4656–4663.
[97] Wang, Z. , Gao, W. , Huang, X. , Mo, Y. , and Chen, L. Ion transport in polyacrylonitrile-based electrolytes with high LiTFSI contents. Electrochemical and Solid-State Letters 2001, 4, A148.
[98] Seo, D. M. , Borodin, O. , Han, S.-D. , Boyle, P. D. , and Henderson, W. A. Electrolyte solvation and ionic association II. Acetonitrile-lithium salt mixtures: highly dissociated salts. Journal of The Electrochemical Society 2012, 159, A1489.
[99] Sun, B. , Mindemark, J. , Edström, K. , and Brandell, D. Realization of high performance polycarbonate-based Li polymer batteries. Electrochemistry Communications 2015, 52, 71–74.
[100] Kimura, K. , Yajima, M. , and Tominaga, Y. A highly-concentrated poly (ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochemistry Communications 2016, 66, 46–48.
[101] Yu, X. , Wang, L. , Ma, J. , Sun, X. , Zhou, X. , and Cui, G. Selectively wetted rigid–flexible coupling polymer electrolyte enabling superior stability and compatibility of high‐voltage lithium metal batteries. Advanced Energy Materials 2020, 10, 1903939.
[102] Sun, J. , Yao, X. , Li, Y. , Zhang, Q. , Hou, C. , Shi, Q. , and Wang, H. Facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high‐energy, safe and adaptable lithium batteries. Advanced Energy Materials 2020, 10, 2000709.
[103] Tatara, R. , Karayaylali, P. , Yu, Y. , Zhang, Y. , Giordano, L. , Maglia, F. , Jung, R. , Schmidt, J. P. , Lund, I. , and Shao-Horn, Y. The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. Journal of The Electrochemical Society 2018, 166, A5090.
[104] Xu, B. , Li, X. , Yang, C. , Li, Y. , Grundish, N. S. , Chien, P.-H. , Dong, K. , Manke, I. , Fang, R. , and Wu, N. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. Journal of the American Chemical Society 2021, 143, 6542–6550.
[105] Zhang, H. , Lian, F. , Bai, L. , Meng, N. , and Xu, C. Developing lithiated polyvinyl formal based single-ion conductor membrane with a significantly improved ionic conductivity as solid-state electrolyte for batteries. Journal of Membrane Science 2018, 552, 349–356.
校內:2028-01-18公開