簡易檢索 / 詳目顯示

研究生: 阮樂明
Nguyen, Le-Minh
論文名稱: 快速 Li+傳導的網絡化固態高分子電解質組成高穩定性鋰金屬電池
Networked Solid-State Polymer Electrolyte with Fast Li+ Conducting for High-Stability Lithium Metal Batteries
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 63
中文關鍵詞: 全固態電池鋰金屬電池網絡化固態聚合物電解質聚合物鹽固體聚合物電解質
外文關鍵詞: All-solid-state batteries, Lithium metal batteries, networked solid-state polymer electrolyte, Polymer-in-salt, Solid polymer electrolyte
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract I Acknowledgement II Table of Contents III List of Tables V List of Figures VI Abbreviations and Symbols IX 1. Introduction 1 1.1. Lithium-ion batteries 1 1.2. Working principle of Li-ion battery 3 1.3. Cathode materials 5 1.3.1. Olivine compound (LiFePO4) 7 1.3.2. Layered compounds 7 1.3.3. Spinel compounds 9 1.4. Anode materials 9 1.4.1. Carbon based materials 12 1.4.2. Lithium titanium oxide (LTO) 12 1.4.3. Alloying materials 13 1.5. Electrolytes for LIBs 14 1.5.1. Liquid electrolytes (LEs) 14 1.5.2. Gel polymer electrolytes (GPEs) 17 1.5.3. Solid-state electrolytes 17 2. Motivation 21 3. Experimental section 25 3.1. Materials 25 3.2. Preparation of NSPE 25 3.3. Electrode preparation and cell assembly 25 3.4. Material characterization 26 3.4.1. Fourier transform infrared spectroscopy (FTIR) 26 3.4.2. Differential scanning calorimetry (DSC) 26 3.4.3. Thermogravimetric analysis (TGA) 27 3.5. Electrochemical measurements 27 3.5.1. Electrochemical impedance spectroscopy (EIS) 27 3.5.2. Linear sweep voltammetry (LSV) 28 3.5.3. Lithium-ion transference number (t+) 29 3.5.4. Li plating-stripping 29 3.5.5. Galvanostatic charge-discharge 30 4. Results and discussion 31 4.1. Characteristics of the networked solid-state polymer electrolyte (NSPE) 31 4.2. Electrochemical properties of the NSPE 37 4.3. Interfacial compatibility between the NSPE and Li metal 41 4.4. Electrochemical performances of solid-state LMBs 44 5. Conclusion 51 6. References 52

    [1] Larcher, D. and Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 2015, 7, 19–29.
    [2] Tarascon, J.-M. and Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2011, 414, 171–179.
    [3] Zhou, L. Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews 2005, 9, 395–408.
    [4] Björklund, E. , Brandell, D. , Hahlin, M. , Edström, K. , and Younesi, R. How the negative electrode influences interfacial and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathodes in Li-ion batteries. Journal of The Electrochemical Society 2017, 164, A3054.
    [5] Pacala, S. and Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. science 2004, 305, 968–972.
    [6] Nitta, N. , Wu, F. , Lee, J. T. , and Yushin, G. Li-ion battery materials: present and future. Materials today 2015, 18, 252–264.
    [7] Bresser, D. , Hosoi, K. , Howell, D. , Li, H. , Zeisel, H. , Amine, K. , and Passerini, S. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. Journal of Power Sources 2018, 382, 176–178.
    [8] Goodenough, J. B. and Park, K.-S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135, 1167–1176.
    [9] AL-Shroofy, M. N. Understanding and Improving Manufacturing Processes for Making Lithium-Ion Battery Electrodes. University of Kentucky 2017
    [10] Aravindan, V. , Gnanaraj, J. , Lee, Y.-S. , and Madhavi, S. LiMnPO4–A next generation cathode material for lithium-ion batteries. Journal of Materials Chemistry A 2013, 1, 3518–3539.
    [11] Cho, J. , Kim, Y. , Kim, B. , Lee, J. , and Park, B. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angewandte Chemie International Edition 2003, 42, 1618–1621.
    [12] Noh, H.-J. , Youn, S. , Yoon, C. S. , and Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources 2013, 233, 121–130.
    [13] Myung, S.-T. , Maglia, F. , Park, K.-J. , Yoon, C. S. , Lamp, P. , Kim, S.-J. , and Sun, Y.-K. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Letters 2017, 2, 196–223.
    [14] Manthiram, A. , Chemelewski, K. , and Lee, E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy & Environmental Science 2014, 7, 1339–1350.
    [15] Liu, D. , Zhu, W. , Trottier, J. , Gagnon, C. , Barray, F. , Guerfi, A. , Mauger, A. , Groult, H. , Julien, C. M. , and Goodenough, J. B. Spinel materials for high-voltage cathodes in Li-ion batteries. Rsc Advances 2014, 4, 154–167.
    [16] Yamada, A. , Chung, S.-C. , and Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. Journal of the electrochemical society 2001, 148, A224.
    [17] Doughty, D. H. and Roth, E. P. A general discussion of Li ion battery safety. The Electrochemical Society Interface 2012, 21, 37.
    [18] Xu, B. , Qian, D. , Wang, Z. , and Meng, Y. S. Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports 2012, 73, 51–65.
    [19] Pasquier, A. Du , Plitz, I. , Menocal, S. , and Amatucci, G. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. Journal of power sources 2003, 115, 171–178.
    [20] Rossen, E. , Jones, C. D. W. , and Dahn, J. R. Structure and electrochemistry of LixMnyNi1− yO2. Solid State Ionics 1992, 57, 311–318.
    [21] Shaju, K. M. and Bruce, P. G. Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A High‐Power and High‐Energy Cathode for Rechargeable Lithium Batteries. Advanced Materials 2006, 18, 2330–2334.
    [22] Kaskhedikar, N. A. and Maier, J. Lithium storage in carbon nanostructures. Advanced Materials 2009, 21, 2664–2680.
    [23] Colin, J.-F. , Godbole, V. , and Novák, P. In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochemistry communications 2010, 12, 804–807.
    [24] Zaghib, K. , Dontigny, M. , Guerfi, A. , Charest, P. , Rodrigues, I. , Mauger, A. , and Julien, C. M. Safe and fast-charging Li-ion battery with long shelf life for power applications. Journal of power sources 2011, 196, 3949–3954.
    [25] Obrovac, M. N. and Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chemical reviews 2014, 114, 11444–11502.
    [26] Park, C.-M. , Kim, J.-H. , Kim, H. , and Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 2010, 39, 3115–3141.
    [27] Huggins, R. A. Lithium alloy negative electrodes. Journal of Power Sources 1999, 81, 13–19.
    [28] Beaulieu, L. Y. , Eberman, K. W. , Turner, R. L. , Krause, L. J. , and Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochemical and Solid-State Letters 2001, 4, A137.
    [29] Abraham, D. P. , Furczon, M. M. , Kang, S.-H. , Dees, D. W. , and Jansen, A. N. Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells. Journal of Power Sources 2008, 180, 612–620.
    [30] Chen, Z. , Ren, Y. , Jansen, A. N. , Lin, C. , Weng, W. , and Amine, K. New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nature communications 2013, 4, 1–8.
    [31] Besenhard, J. O. , Winter, M. , Yang, J. , and Biberacher, W. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources 1995, 54, 228–231.
    [32] Fong, R. , Sacken, U. Von , and Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of The Electrochemical Society 1990, 137, 2009.
    [33] Yang, C. R. , Wang, Y. Y. , and Wan, C. C. Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. Journal of power sources 1998, 72, 66–70.
    [34] Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104, 4303–4418.
    [35] Zhang, Z. , Shao, Y. , Lotsch, B. , Hu, Y.-S. , Li, H. , Janek, J. , Nazar, L. F. , Nan, C.-W. , Maier, J. , and Armand, M. New horizons for inorganic solid state ion conductors. Energy & Environmental Science 2018, 11, 1945–1976.
    [36] Arbi, K. , Rojo, J. M. , and Sanz, J. Lithium mobility in titanium based Nasicon Li1+ xTi2− xAlx (PO4) 3 and LiTi2− x Zrx (PO4) 3 materials followed by NMR and impedance spectroscopy. Journal of the European Ceramic Society 2007, 27, 4215–4218.
    [37] Kumar, B. , Thomas, D. , and Kumar, J. Space-charge-mediated superionic transport in lithium Ion conducting glass–ceramics. Journal of The Electrochemical Society 2009, 156, A506.
    [38] Murugan, R. , Thangadurai, V. , and Weppner, W. Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition 2007, 46, 7778–7781.
    [39] Li, Y. , Han, J.-T. , Wang, C.-A. , Xie, H. , and Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry 2012, 22, 15357–15361.
    [40] Kamaya, N. , Homma, K. , Yamakawa, Y. , Hirayama, M. , Kanno, R. , Yonemura, M. , Kamiyama, T. , Kato, Y. , Hama, S. , and Kawamoto, K. A lithium superionic conductor. Nature materials 2011, 10, 682–686.
    [41] Inaguma, Y. , Liquan, C. , Itoh, M. , Nakamura, T. , Uchida, T. , Ikuta, H. , and Wakihara, M. High ionic conductivity in lithium lanthanum titanate. Solid State Communications 1993, 86, 689–693.
    [42] Seino, Y. , Ota, T. , Takada, K. , Hayashi, A. , and Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy & Environmental Science 2014, 7, 627–631.
    [43] Zhang, J. , Ma, C. , Liu, J. , Chen, L. , Pan, A. , and Wei, W. Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. Journal of Membrane Science 2016, 509, 138–148.
    [44] Lu, Q. , He, Y. , Yu, Q. , Li, B. , Kaneti, Y. V. , Yao, Y. , Kang, F. , and Yang, Q. Dendrite‐free, high‐rate, long‐life lithium metal batteries with a 3D cross‐linked network polymer electrolyte. Advanced Materials 2017, 29, 1604460.
    [45] Shim, J. , Kim, D.-G. , Lee, J. H. , Baik, J. H. , and Lee, J.-C. Synthesis and properties of organic/inorganic hybrid branched-graft copolymers and their application to solid-state electrolytes for high-temperature lithium-ion batteries. Polymer Chemistry 2014, 5, 3432–3442.
    [46] Shim, J. , Kim, D.-G. , Kim, H. J. , Lee, J. H. , and Lee, J.-C. Polymer composite electrolytes having core–shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries. ACS applied materials & interfaces 2015, 7, 7690–7701.
    [47] Pan, Q. , Barbash, D. , Smith, D. M. , Qi, H. , Gleeson, S. E. , and Li, C. Y. Correlating Electrode–Electrolyte Interface and Battery Performance in Hybrid Solid Polymer Electrolyte‐Based Lithium Metal Batteries. Advanced Energy Materials 2017, 7, 1701231.
    [48] Liu, W. , Song, M. , Kong, B. , and Cui, Y. Flexible and stretchable energy storage: recent advances and future perspectives. Advanced materials 2017, 29, 1603436.
    [49] Rogers, J. A. , Someya, T. , and Huang, Y. Materials and mechanics for stretchable electronics. science 2010, 327, 1603–1607.
    [50] Chang, J. , Huang, Q. , Gao, Y. , and Zheng, Z. Pathways of Developing High‐Energy‐Density Flexible Lithium Batteries (Adv. Mater. 46/2021). Advanced Materials 2021, 33, 2170363.
    [51] Weber, R. , Genovese, M. , Louli, A. J. , Hames, S. , Martin, C. , Hill, I. G. , and Dahn, J. R. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4, 683–689.
    [52] Chen, S. , Wen, K. , Fan, J. , Bando, Y. , and Golberg, D. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A 2018, 6, 11631–11663.
    [53] Etacheri, V. , Marom, R. , Elazari, R. , Salitra, G. , and Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4, 3243–3262.
    [54] Zhao, Y. , Wang, L. , Zhou, Y. , Liang, Z. , Tavajohi, N. , Li, B. , and Li, T. Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li‐Based Rechargeable Batteries. Advanced Science 2021, 8, 2003675.
    [55] Chen, X. , Zhao, B. , Yan, C. , and Zhang, Q. Review on Li deposition in working batteries: from nucleation to early growth. Advanced Materials 2021, 33, 2004128.
    [56] Wen, X. , Zeng, Q. , Guan, J. , Wen, W. , Chen, P. , Li, Z. , Liu, Y. , Chen, A. , Liu, X. , and Liu, W. 3D structural lithium alginate-based gel polymer electrolytes with superior high-rate long cycling performance for high-energy lithium metal batteries. Journal of Materials Chemistry A 2022, 10, 707–718.
    [57] Vijayakumar, V. , Anothumakkool, B. , Kurungot, S. , Winter, M. , and Nair, J. R. In situ polymerization process: an essential design tool for lithium polymer batteries. Energy & Environmental Science 2021, 14, 2708–2788.
    [58] Cai, X. , Ding, J. , Chi, Z. , Wang, W. , Wang, D. , and Wang, G. Rearrangement of Ion Transport Path on Nano-Cross-linker for All-Solid-State Electrolyte with High Room Temperature Ionic Conductivity. ACS nano 2021, 15, 20489–20503.
    [59] Guzmán‐González, G. , Vauthier, S. , Alvarez‐Tirado, M. , Cotte, S. , Castro, L. , Guéguen, A. , Casado, N. , and Mecerreyes, D. Single‐Ion Lithium Conducting Polymers with High Ionic Conductivity Based on Borate Pendant Groups. Angewandte Chemie 2022, 134, e202114024.
    [60] Nguyen, H. T. T. , Nguyen, D. H. , Zhang, Q.-C. , Lee, Y.-L. , Jan, J.-S. , Chiu, C.-C. , and Teng, H. A scaffold membrane of solid polymer electrolytes for realizing high-stability and dendrite-free lithium-metal batteries. Journal of Materials Chemistry A 2021, 9, 25408–25417.
    [61] Pham, M.-N. , Subramani, R. , Lin, Y.-H. , Lee, Y.-L. , Jan, J.-S. , Chiu, C.-C. , and Teng, H. Acylamino-functionalized crosslinker to synthesize all-solid-state polymer electrolytes for high-stability lithium batteries. Chemical Engineering Journal 2022, 430, 132948.
    [62] Duan, H. , Yin, Y.-X. , Zeng, X.-X. , Li, J.-Y. , Shi, J.-L. , Shi, Y. , Wen, R. , Guo, Y.-G. , and Wan, L.-J. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Materials 2018, 10, 85–91.
    [63] Kim, S. , Mong, A. Le , and Kim, D. Accelerated ion conduction by co-grafting of poly (ethylene glycol) and nitrile-terminated ionic liquid on poly (arylene ether sulfone) for solid electrolyte membranes for lithium ion battery. Journal of Power Sources 2022, 529, 231255.
    [64] Cui, Y. , Wan, J. , Ye, Y. , Liu, K. , Chou, L.-Y. , and Cui, Y. A fireproof, lightweight, polymer–polymer solid-state electrolyte for safe lithium batteries. Nano letters 2020, 20, 1686–1692.
    [65] Seo, J. , Lee, G. , Hur, J. , Sung, M. , Seo, J. , and Kim, D. Mechanically Interlocked Polymer Electrolyte with Built‐In Fast Molecular Shuttles for All‐Solid‐State Lithium Batteries. Advanced Energy Materials 2021, 11, 2102583.
    [66] Jiang, H. , Han, X. , Du, X. , Chen, Z. , Lu, C. , Li, X. , Zhang, H. , Zhao, J. , Han, P. , and Cui, G. A PF6−‐Permselective Polymer Electrolyte with Anion Solvation Regulation Enabling Long‐Cycle Dual‐Ion Battery. Advanced Materials 2022, 34, 2108665.
    [67] Kimura, K. , Motomatsu, J. , and Tominaga, Y. Correlation between solvation structure and ion-conductive behavior of concentrated poly (ethylene carbonate)-based electrolytes. The Journal of Physical Chemistry C 2016, 120, 12385–12391.
    [68] Gao, H. , Grundish, N. S. , Zhao, Y. , Zhou, A. , and Goodenough, J. B. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries. Energy Material Advances 2021, 2021
    [69] Xu, S. , Sun, Z. , Sun, C. , Li, F. , Chen, K. , Zhang, Z. , Hou, G. , Cheng, H. , and Li, F. Homogeneous and fast ion conduction of PEO‐based solid‐state electrolyte at low temperature. Advanced Functional Materials 2020, 30, 2007172.
    [70] Liu, W. , Yi, C. , Li, L. , Liu, S. , Gui, Q. , Ba, D. , Li, Y. , Peng, D. , and Liu, J. Designing polymer‐in‐salt electrolyte and fully infiltrated 3D electrode for integrated solid‐state lithium batteries. Angewandte Chemie 2021, 133, 13041–13050.
    [71] Wu, B. , Wang, L. , Li, Z. , Zhao, M. , Chen, K. , Liu, S. , Pu, Y. , and Li, J. Performance of “polymer-in-salt” electrolyte PAN-LiTFSI enhanced by graphene oxide filler. Journal of the Electrochemical Society 2016, 163, A2248.
    [72] Zhao, Y. , Bai, Y. , Bai, Y. , An, M. , Chen, G. , Li, W. , Li, C. , and Zhou, Y. A rational design of solid polymer electrolyte with high salt concentration for lithium battery. Journal of Power Sources 2018, 407, 23–30.
    [73] Li, H. , Du, Y. , Wu, X. , Xie, J. , and Lian, F. Developing “Polymer‐in‐Salt” High Voltage Electrolyte Based on Composite Lithium Salts for Solid‐State Li Metal Batteries. Advanced Functional Materials 2021, 31, 2103049.
    [74] Wang, S.-H. , Lin, Y.-Y. , Teng, C.-Y. , Chen, Y.-M. , Kuo, P.-L. , Lee, Y.-L. , Hsieh, C.-T. , and Teng, H. Immobilization of anions on polymer matrices for gel electrolytes with high conductivity and stability in lithium ion batteries. ACS Applied Materials & Interfaces 2016, 8, 14776–14787.
    [75] Hsu, S.-T. , Tran, B. T. , Subramani, R. , Nguyen, H. T. T. , Rajamani, A. , Lee, M.-Y. , Hou, S.-S. , Lee, Y.-L. , and Teng, H. Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. Journal of Power Sources 2020, 449, 227518.
    [76] Subramani, R. , Pham, M.-N. , Lin, Y.-H. , Hsieh, C.-T. , Lee, Y.-L. , Jan, J.-S. , Chiu, C.-C. , and Teng, H. Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries. Chemical Engineering Journal 2022, 431, 133442.
    [77] Cheng, X. , Zhang, R. , Zhao, C. , Wei, F. , Zhang, J. , and Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Advanced science 2016, 3, 1500213.
    [78] Wang, D. , Zhang, W. , Zheng, W. , Cui, X. , Rojo, T. , and Zhang, Q. Towards high‐safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Advanced Science 2017, 4, 1600168.
    [79] Zhang, H. , Liu, C. , Zheng, L. , Xu, F. , Feng, W. , Li, H. , Huang, X. , Armand, M. , Nie, J. , and Zhou, Z. Lithium bis (fluorosulfonyl) imide/poly (ethylene oxide) polymer electrolyte. Electrochimica Acta 2014, 133, 529–538.
    [80] Zhang, H. , Feng, W. , Nie, J. , and Zhou, Z. Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery. Journal of Fluorine Chemistry 2015, 174, 49–61.
    [81] Yamada, Y. , Yaegashi, M. , Abe, T. , and Yamada, A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chemical Communications 2013, 49, 11194–11196.
    [82] Yamada, Y. and Yamada, A. Superconcentrated electrolytes for lithium batteries. Journal of The Electrochemical Society 2015, 162, A2406.
    [83] Li, Y. , Ding, F. , Xu, Z. , Sang, L. , Ren, L. , Ni, W. , and Liu, X. Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte. Journal of Power Sources 2018, 397, 95–101.
    [84] Wu, H. , Gao, P. , Jia, H. , Zou, L. , Zhang, L. , Cao, X. , Engelhard, M. H. , Bowden, M. E. , Ding, M. S. , and Hu, J. A polymer-in-salt electrolyte with enhanced oxidative stability for lithium metal polymer batteries. ACS Applied Materials & Interfaces 2021, 13, 31583–31593.
    [85] Stuart, B. H. Infrared spectroscopy: fundamentals and applications. John Wiley & Sons: 2004.
    [86] Chen, B. , Xu, Q. , Huang, Z. , Zhao, Y. , Chen, S. , and Xu, X. One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. Journal of Power Sources 2016, 331, 322–331.
    [87] Chen, S. , Wang, J. , Wei, Z. , Zhang, Z. , Deng, Y. , Yao, X. , and Xu, X. One-pot synthesis of crosslinked polymer electrolyte beyond 5V oxidation potential for all-solid-state lithium battery. Journal of Power Sources 2019, 431, 1–7.
    [88] Kerner, M. , Plylahan, N. , Scheers, J. , and Johansson, P. Thermal stability and decomposition of lithium bis (fluorosulfonyl) imide (LiFSI) salts. Rsc Advances 2016, 6, 23327–23334.
    [89] Ahmed, F. , Rahman, M. M. , Sutradhar, S. C. , Lopa, N. S. , Ryu, T. , Yoon, S. , Choi, I. , Lee, Y. , and Kim, W. Synthesis and electrochemical performance of an imidazolium based Li salt as electrolyte with Li fluorinated sulfonylimides as additives for Li-Ion batteries. Electrochimica Acta 2019, 302, 161–168.
    [90] Zhang, M. , Becking, J. , Stan, M. C. , Lenoch, A. , Bieker, P. , Kolek, M. , and Winter, M. Wetting Phenomena and their Effect on the Electrochemical Performance of Surface‐Tailored Lithium Metal Electrodes in Contact with Cross‐linked Polymeric Electrolytes. Angewandte Chemie International Edition 2020, 59, 17145–17153.
    [91] Wang, Q. , Cui, Z. , Zhou, Q. , Shangguan, X. , Du, X. , Dong, S. , Qiao, L. , Huang, S. , Liu, X. , and Tang, K. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries. Energy Storage Materials 2020, 25, 756–763.
    [92] Tian, L. , Liu, Y. , Su, Z. , Cao, Y. , Zhang, W. , Yi, S. , Zhang, Y. , Niu, B. , Dong, P. , and Long, D. A lithiated organic nanofiber-reinforced composite polymer electrolyte enabling Li-ion conduction highways for solid-state lithium metal batteries. Journal of Materials Chemistry A 2021, 9, 23882–23890.
    [93] Chen, L. , Li, W. , Fan, L. , Nan, C. , and Zhang, Q. Intercalated electrolyte with high transference number for dendrite‐free solid‐state lithium batteries. Advanced Functional Materials 2019, 29, 1901047.
    [94] Liu, W. , Liu, N. , Sun, J. , Hsu, P.-C. , Li, Y. , Lee, H.-W. , and Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano letters 2015, 15, 2740–2745.
    [95] Zhou, D. , He, Y. , Liu, R. , Liu, M. , Du, H. , Li, B. , Cai, Q. , Yang, Q. , and Kang, F. In situ synthesis of a hierarchical all‐solid‐state electrolyte based on nitrile materials for high‐performance lithium‐ion batteries. Advanced Energy Materials 2015, 5, 1500353.
    [96] Yoon, H. , Best, A. S. , Forsyth, M. , MacFarlane, D. R. , and Howlett, P. C. Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis (fluorosulfonyl) imide based ionic liquid electrolytes. Physical Chemistry Chemical Physics 2015, 17, 4656–4663.
    [97] Wang, Z. , Gao, W. , Huang, X. , Mo, Y. , and Chen, L. Ion transport in polyacrylonitrile-based electrolytes with high LiTFSI contents. Electrochemical and Solid-State Letters 2001, 4, A148.
    [98] Seo, D. M. , Borodin, O. , Han, S.-D. , Boyle, P. D. , and Henderson, W. A. Electrolyte solvation and ionic association II. Acetonitrile-lithium salt mixtures: highly dissociated salts. Journal of The Electrochemical Society 2012, 159, A1489.
    [99] Sun, B. , Mindemark, J. , Edström, K. , and Brandell, D. Realization of high performance polycarbonate-based Li polymer batteries. Electrochemistry Communications 2015, 52, 71–74.
    [100] Kimura, K. , Yajima, M. , and Tominaga, Y. A highly-concentrated poly (ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochemistry Communications 2016, 66, 46–48.
    [101] Yu, X. , Wang, L. , Ma, J. , Sun, X. , Zhou, X. , and Cui, G. Selectively wetted rigid–flexible coupling polymer electrolyte enabling superior stability and compatibility of high‐voltage lithium metal batteries. Advanced Energy Materials 2020, 10, 1903939.
    [102] Sun, J. , Yao, X. , Li, Y. , Zhang, Q. , Hou, C. , Shi, Q. , and Wang, H. Facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high‐energy, safe and adaptable lithium batteries. Advanced Energy Materials 2020, 10, 2000709.
    [103] Tatara, R. , Karayaylali, P. , Yu, Y. , Zhang, Y. , Giordano, L. , Maglia, F. , Jung, R. , Schmidt, J. P. , Lund, I. , and Shao-Horn, Y. The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. Journal of The Electrochemical Society 2018, 166, A5090.
    [104] Xu, B. , Li, X. , Yang, C. , Li, Y. , Grundish, N. S. , Chien, P.-H. , Dong, K. , Manke, I. , Fang, R. , and Wu, N. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. Journal of the American Chemical Society 2021, 143, 6542–6550.
    [105] Zhang, H. , Lian, F. , Bai, L. , Meng, N. , and Xu, C. Developing lithiated polyvinyl formal based single-ion conductor membrane with a significantly improved ionic conductivity as solid-state electrolyte for batteries. Journal of Membrane Science 2018, 552, 349–356.

    無法下載圖示 校內:2028-01-18公開
    校外:2028-01-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE