| 研究生: |
洪以佳 Hung, Yi-Chia |
|---|---|
| 論文名稱: |
儲氫合金廢鑭鎳回收鎳、鈷、錳之研究 Recovery of Nickel, Cobalt and Manganese from Spent Lanthanum-Nickel Hydrogen Storage Alloy |
| 指導教授: |
陳偉聖
Chen, Wei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | LaNi5儲氫合金 、選擇性氨浸漬 、溶媒萃取 、化學沉澱 、資源再生 |
| 外文關鍵詞: | LaNi5 Hydrogen storage alloy, Hydrometallurgy, Ammoniacal leaching, Solvent extraction, Recovery |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對LaNi5儲氫合金回收鎳、鈷、錳金屬,實驗主要分為四個部分。第一部分為LaNi5儲氫合金的材料特性分析,探討樣品的表面特性、化學成分組成與結晶相組成,並藉由分析結果規劃整體實驗流程。第二部分為選擇性氨浸漬,利用三元氨浸漬系統,將鎳、鈷金屬形成氨錯離子,溶解至水溶液中,鑭金屬則留在固相。氨浸漬將探討不同實驗參數下金屬之浸漬效率,得到最佳氨浸漬參數,鎳、鈷之浸漬效率分別為98%與97%,並藉由浸漬反應動力學之研究,得知氨浸漬反應機制為混合控制機制,鎳、鈷之浸漬活化能分別為16.48 kJ/mol與15.15 kJ/mol。
第三部分為金屬分離純化,主要方法為溶媒萃取。溶媒萃取實驗分為兩階段,第一階段使用Na-D2EHPA萃取劑,將錳離子進行選擇性萃取,鎳、鈷離子則留在水相。第二階段以Na-Cyanex 272為萃取劑,將鈷離子萃取至有機相,鎳離子則留在水相。在Na-D2EHPA與Na-Cyanex 272有機相中之金屬離子皆透過不同pH值的反萃劑進行兩階段反萃取,分別得到高純度之含錳、鈷離子水溶液。
第四部分為金屬化合物析出,根據含有不同金屬離子之水溶液,分別使用化學沉澱法與濃縮結晶法。含有錳離子的水溶液以次氯酸鈉為沉澱劑,產生二氧化錳沉澱,沉澱物經酸洗後鍛燒,得到純度為99.03%的三氧化二錳;含有鎳離子與鈷離子的水溶液皆使用化學沉澱法與濃縮結晶法,產生氫氧化物沉澱與硫酸化合物,硫酸鎳與硫酸鈷純度分別為99.24%與99.80%,氫氧化物再經由鍛燒,得到一氧化鎳與四氧化三鈷,純度分別為99.29%與99.70%。
The LaNi5 hydrogen storage alloy is recognized as one of the leading materials in hydrogen storage technology, which contains valuable metals such as nickel, cobalt, and manganese. This study aims to recover these metals from waste LaNi5 alloy by using the hydrometallurgical method. Selective ammoniacal leaching is designed to dissolve nickel and cobalt while preventing the leaching of lanthanum. The chemicals applied in the leaching process were ammonia, ammonium carbonate, and hydrogen peroxide. The evaporation method would be used to deal with the ammoniacal leach liquor, recovering the ammonia solution, and obtaining a solid that contains nickel and cobalt. The solid was then dissolved using sulfuric acid, and the metal ions in the leach liquor were separated by solvent extraction. First, Mn2+, Fe3+, Al3+, and La3+ were extracted into the organic phase using D2EHPA. Ni2+ and Co2+ in the aqueous phase were separated utilizing Cyanex 272, secondly. After that, the metal ions in the organic phase were stripped in two stages to obtain high-purity Mn2+ and Co2+ in the sulfuric acid solutions. The metal compounds were subsequently recovered by chemical precipitation or evaporation procedures. Mn2+ precipitated as MnO2 by reacting with NaClO, then calcined to obtain Mn2O3. Ni2+ and Co2+ both reacted with NaOH to precipitate their respective hydroxides, then calcined to obtain NiO and Co3O4, respectively. Ni2+ and Co2+ were also recovered as NiSO4 and CoSO4, using the evaporation method.
[1] Carpio, M. M. (2025). A stratigrapher’s reflecions on climate change and energy transition. Journal of Iberian Geology, 1-15.
[2] Solomon, S., Plattner, G. K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the national academy of sciences, 106(6), 1704-1709.
[3] Anika, O. C., Nnabuife, S. G., Bello, A., Okoroafor, E. R., Kuang, B., & Villa, R. (2022). Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Science & Technology, 5, 100072.
[4] Su, C. W., Pang, L. D., Tao, R., Shao, X., & Umar, M. (2022). Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions?. Technological Forecasting and Social Change, 182, 121798.
[5] Faye, O., Szpunar, J., & Eduok, U. (2022). A critical review on the current technologies for the generation, storage, and transportation of hydrogen. International journal of hydrogen energy, 47(29), 13771-13802.
[6] Kumar, S., Darshna, A., & Ranjan, D. (2023). A review of literature on the integration of green energy and circular economy. Heliyon, 9(11).
[7] Amrouche, S. O., Rekioua, D., Rekioua, T., & Bacha, S. (2016). Overview of energy storage in renewable energy systems. International journal of hydrogen energy, 41(45), 20914-20927.
[8] Marchenko, O. V., & Solomin, S. V. (2015). The future energy: Hydrogen versus electricity. International Journal of Hydrogen Energy, 40(10), 3801-3805.
[9] Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International journal of hydrogen energy, 44(29), 15072-15086.
[10] Niaz, S., Manzoor, T., & Pandith, A. H. (2015). Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 50, 457-469.
[11] Nagar, R., Srivastava, S., Hudson, S. L., Amaya, S. L., Tanna, A., Sharma, M., ... & Srinivasan, S. S. (2023). Recent developments in state-of-the-art hydrogen energy technologies–review of hydrogen storage materials. Solar Compass, 5, 100033.
[12] Panwar, K., & Srivastava, S. (2019). On structural model of AB5-type multi-element hydrogen storage alloy. International Journal of Hydrogen Energy, 44(57), 30208-30217.
[13] Xu, Y., Deng, Y., Liu, W., Zhao, X., Xu, J., & Yuan, Z. (2023). Research progress of hydrogen energy and metal hydrogen storage materials. Sustainable Energy Technologies and Assessments, 55, 102974.
[14] Goodell, P. D. (1984). Stability of rechargeable hydriding alloys during extended cycling. Journal of the Less Common Metals, 99(1), 1-14.
[15] Tliha, M., Mathlouthi, H., Lamloumi, J., & Percheron-Guegan, A. (2007). AB5-type hydrogen storage alloy used as anodic materials in Ni-MH batteries. Journal of alloys and compounds, 436(1-2), 221-225.
[16] Xu, J., Chen, X., Zhu, W., Zhang, W., Cui, H., Zhu, S., ... & Cheng, H. (2022). Enhanced cycling stability and reduced hysteresis of AB5-type hydrogen storage alloys by partial substitution of Sn for Ni. International Journal of Hydrogen Energy, 47(53), 22495-22509.
[17] Babu, K. S., & Kumar, E. A. (2022). Thermodynamic analysis of thermochemical energy storage system based on AB5 type hydride pairs. Materials Today: Proceedings, 49, 2042-2047.
[18] Sato, T., Saitoh, H., Utsumi, R., Ito, J., Nakahira, Y., Obana, K., ... & Orimo, S. I. (2023). Hydrogen absorption reactions of hydrogen storage alloy LaNi5 under high pressure. Molecules, 28(3), 1256.
[19] Prohaska, T., Irrgeher, J., Benefield, J., Böhlke, J. K., Chesson, L. A., Coplen, T. B., ... & Meija, J. (2022). Standard atomic weights of the elements 2021 (IUPAC Technical Report). Pure and Applied Chemistry, 94(5), 573-600.
[20] Begum, W., Rai, S., Banerjee, S., Bhattacharjee, S., Mondal, M. H., Bhattarai, A., & Saha, B. (2022). A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC advances, 12(15), 9139-9153.
[21] El-deeb, A. K., El-Bialy, B. E., El-Borai, N. B., & Elsabbagh, H. S. (2025). Nickel: A Review on Environmental Distribution, Toxicokinetics, and Potential Health Impacts. Journal of Current Veterinary Research, 7(1), 113-129.
[22] International Agency for Research on Cancer. (1990). Chromium, nickel and welding. IARC Monogr Eval Carcinog Risks Hum, 49.
[23] U.S. Geological Survey. (2021). Mineral commodity summaries 2021.
[24] U.S. Geological Survey. (2022). Mineral commodity summaries 2022.
[25] U.S. Geological Survey. (2023). Mineral commodity summaries 2023.
[26] U.S. Geological Survey. (2024). Mineral commodity summaries 2024.
[27] U.S. Geological Survey. (2025). Mineral commodity summaries 2025.
[28] International Agency for Research on Cancer. (1991). Chlorinated drinking-water; chlorination by-products; some other halogenated compounds; cobalt and cobalt compounds. IARC Monogr Eval Carcinog Risks Hum, 52.
[29] Singh, D., & Harbison, R. D. (2015). Cobalt. Hamilton & Hardy's Industrial Toxicology, 101-108.
[30] Matricardi, L. R., & Downing, J. (2000). Manganese and manganese alloys. Kirk‐Othmer Encyclopedia of Chemical Technology, 1-27.
[31] Habashi, F. (2002). Transition Metals Production: V, Cr, Mn, Co, Ni.
[32] Olsen, S. E., Olsen, S., Tangstad, M., & Lindstad, T. (2007). Production of manganese ferroalloys. Tapir academic press.
[33] Fu, Y., Qiao, H., Feng, Q., Chen, K., Li, Y., Xue, C., & Zhang, Y. (2023). Review of new methods for resource utilisation of electrolytic manganese residue and its application in building materials. Construction and Building Materials, 401, 132901.
[34] Wedeen, R. P., Berlinger, B., & Aaseth, J. (2015). Lanthanum. In Handbook on the Toxicology of Metals (pp. 903-909). Academic Press.
[35] Abdelnour, S. A., Abd El-Hack, M. E., Khafaga, A. F., Noreldin, A. E., Arif, M., Chaudhry, M. T., ... & Abdel-Daim, M. M. (2019). Impacts of rare earth elements on animal health and production: Highlights of cerium and lanthanum. Science of the Total Environment, 672, 1021-1032.
[36] Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285-1303.
[37] Sinha, S., Meshram, P., & Pandey, B. D. (2016). Metallurgical processes for the recovery and recycling of lanthanum from various resources—A review. Hydrometallurgy, 160, 47-59.
[38] Jadhav, S. B., Malavekar, D. B., Mohite, R. A., Shaikh, S. B., Kadam, K. V., Pawaskar, P. N., ... & Lee, N. E. (2025). A critical review of lanthanum and lanthanum-based materials: synthesis, applications, and challenges. Rare Metals, 1-32.
[39] Baláž, P. (2003). Mechanical activation in hydrometallurgy. International journal of mineral processing, 72(1-4), 341-354.
[40] Baláž, P., Aláčová, A., Achimovičová, M., Ficeriová, J., & Godočíková, E. (2005). Mechanochemistry in hydrometallurgy of sulphide minerals. Hydrometallurgy, 77(1-2), 9-17.
[41] Arslan, V. (2021). Bacterial leaching of copper, zinc, nickel and aluminum from discarded printed circuit boards using acidophilic bacteria. Journal of Material Cycles and Waste Management, 23(5), 2005-2015.
[42] Ognyanova, A., Ozturk, A. T., De Michelis, I., Ferella, F., Taglieri, G., Akcil, A., & Vegliò, F. (2009). Metal extraction from spent sulfuric acid catalyst through alkaline and acidic leaching. Hydrometallurgy, 100(1-2), 20-28.
[43] Georgiou, D., & Papangelakis, V. G. (1998). Sulphuric acid pressure leaching of a limonitic laterite: chemistry and kinetics. Hydrometallurgy, 49(1-2), 23-46.
[44] Flett, D. S. (2004). Cobalt-nickel separation in hydrometallurgy: a review. Chemistry for sustainable development, 12(1), 81-91.
[45] Vaughan, J., Hawker, W., & White, D. (2011, May). Chemical aspects of mixed nickel-cobalt hydroxide precipitation and refining. In Proceedings of the ALTA Ni/Co/Cu Conference (pp. 23-25).
[46] Wen, J., Tran, T. T., & Lee, M. S. (2024). Comparison of separation of Mn (II), Co (II), and Ni (II) by oxidative precipitation between chloride and sulfate solutions. Physicochemical Problems of Mineral Processing, 60.
[47] Li, L., Xu, S., Ju, Z., & Wu, F. (2009). Recovery of Ni, Co and rare earths from spent Ni–metal hydride batteries and preparation of spherical Ni (OH) 2. Hydrometallurgy, 100(1-2), 41-46.
[48] Kang, J., Senanayake, G., Sohn, J., & Shin, S. M. (2010). Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy, 100(3-4), 168-171.
[49] Virolainen, S., Wesselborg, T., Kaukinen, A., & Sainio, T. (2021). Removal of iron, aluminium, manganese and copper from leach solutions of lithium-ion battery waste using ion exchange. Hydrometallurgy, 202, 105602.
[50] Salces, A. M., Kelly, N., Streblow, G. J., Temel, E. T., Rudolph, M., Chagnes, A., & Vanderbruggen, A. (2024). A contribution to understanding ion-exchange mechanisms for lithium recovery from industrial effluents of lithium-ion battery recycling operations. Journal of Environmental Chemical Engineering, 12(3), 112951.
[51] Zhang, P., Yokoyama, T., Itabashi, O., Wakui, Y., Suzuki, T. M., & Inoue, K. (1999). Recovery of metal values from spent nickel–metal hydride rechargeable batteries. Journal of Power Sources, 77(2), 116-122.
[52] Rodrigues, L. E. O. C., & Mansur, M. B. (2010). Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel–metal–hydride batteries. Journal of power sources, 195(11), 3735-3741.
[53] Innocenzi, V., Ippolito, N. M., De Michelis, I., Prisciandaro, M., Medici, F., & Vegliò, F. (2017). A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries. Journal of power sources, 362, 202-218.
[54] Liu, Y., Pan, H., Gao, M., & Wang, Q. (2011). Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. Journal of Materials Chemistry, 21(13), 4743-4755.
[55] Meshram, P., Pandey, B. D., & Mankhand, T. R. (2016). Process optimization and kinetics for leaching of rare earth metals from the spent Ni–metal hydride batteries. Waste Management, 51, 196-203.
[56] Meshram, P., Pandey, B. D., & Mankhand, T. R. (2015). Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chemical Engineering Journal, 281, 418-427.
[57] Xiao, W., Chen, X., Liu, X., Zhao, Z., & Li, Y. (2021). A method for extracting valuable metals from low nickel matte by non-oxidative leaching with H2SO4. Separation and Purification Technology, 270, 118789.
[58] Fernandes, A., Afonso, J. C., & Dutra, A. J. B. (2013). Separation of nickel (II), cobalt (II) and lanthanides from spent Ni-MH batteries by hydrochloric acid leaching, solvent extraction and precipitation. Hydrometallurgy, 133, 37-43.
[59] Wang, B., Guo, Q., Wei, G., Zhang, P., Qu, J., & Qi, T. (2012). Characterization and atmospheric hydrochloric acid leaching of a limonitic laterite from Indonesia. Hydrometallurgy, 129, 7-13.
[60] Li, J., Li, X., Hu, Q., Wang, Z., Zheng, J., Wu, L., & Zhang, L. (2009). Study of extraction and purification of Ni, Co and Mn from spent battery material. Hydrometallurgy, 99(1-2), 7-12.
[61] Larsson, K., Ekberg, C., & Ødegaard-Jensen, A. (2013). Dissolution and characterization of HEV NiMH batteries. Waste management, 33(3), 689-698.
[62] Lee, C. K., & Rhee, K. I. (2002). Preparation of LiCoO2 from spent lithium-ion batteries. Journal of Power Sources, 109(1), 17-21.
[63] Chen, X., Fan, B., Xu, L., Zhou, T., & Kong, J. (2016). An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Cleaner Production, 112, 3562-3570.
[64] He, L. P., Sun, S. Y., Mu, Y. Y., Song, X. F., & Yu, J. G. (2017). Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant. ACS Sustainable Chemistry & Engineering, 5(1), 714-721.
[65] Coman, V., Robotin, B., & Ilea, P. (2013). Nickel recovery/removal from industrial wastes: A review. Resources, conservation and recycling, 73, 229-238.
[66] Wang, J., Zhang, Y., Yu, L., Cui, K., Fu, T., & Mao, H. (2022). Effective separation and recovery of valuable metals from waste Ni-based batteries: A comprehensive review. Chemical Engineering Journal, 439, 135767.
[67] Salehi, H., Maroufi, S., Mofarah, S. S., Nekouei, R. K., & Sahajwalla, V. (2023). Recovery of rare earth metals from Ni-MH batteries: A comprehensive review. Renewable and Sustainable Energy Reviews, 178, 113248.
[68] Zhang, J., Hu, J., Zhang, W., Chen, Y., & Wang, C. (2018). Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. Journal of cleaner production, 204, 437-446.
[69] Ma, Y., Tang, J., Wanaldi, R., Zhou, X., Wang, H., Zhou, C., & Yang, J. (2021). A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching. Journal of Hazardous Materials, 402, 123491.
[70] Wang, S., Wang, C., Lai, F., Yan, F., & Zhang, Z. (2020). Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Management, 102, 122-130.
[71] Ku, H., Jung, Y., Jo, M., Park, S., Kim, S., Yang, D., ... & Kwon, K. (2016). Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. Journal of hazardous materials, 313, 138-146.
[72] Zheng, X., Gao, W., Zhang, X., He, M., Lin, X., Cao, H., ... & Sun, Z. (2017). Spent lithium-ion battery recycling–Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste management, 60, 680-688.
[73] Li, D., Zhang, B., Ye, L., Xiao, Z., Ming, L., & Ou, X. (2022). Regeneration of high-performance Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material from mixed spent lithium-ion batteries through selective ammonia leaching. Journal of Cleaner Production, 349, 131373.
[74] Wang, C., Wang, S., Yan, F., Zhang, Z., Shen, X., & Zhang, Z. (2020). Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Management, 114, 253-262.
[75] Alvial-Hein, G., Mahandra, H., & Ghahreman, A. (2021). Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: A review. Journal of Cleaner Production, 297, 126592.
[76] Joo, S. H., Shin, D. J., Oh, C. H., Wang, J. P., Park, J. T., & Shin, S. M. (2017). Application of Co and Mn for a Co-Mn-Br or Co-Mn-C2H3O2 petroleum liquid catalyst from the cathode material of spent lithium ion batteries by a hydrometallurgical route. Metals, 7(10), 439.
[77] Ma, L., Nie, Z., Xi, X., & Han, X. G. (2013). Cobalt recovery from cobalt-bearing waste in sulphuric and citric acid systems. Hydrometallurgy, 136, 1-7.
[78] Khosravirad, M. M., Bakhtiari, F., Ghader, S., & Abkhoshk, E. (2020). An improved process methodology for extracting cobalt from zinc plant residues. Hydrometallurgy, 191, 105163.
[79] Petranikova, M., Ebin, B., & Tunsu, C. (2019). Selective recovery of cobalt from the secondary streams after NiMH batteries processing using Cyanex 301. Waste Management, 83, 194-201.
[80] Yang, G. C., Huang, Y. C., & Huang, S. (2017, June). Recovery of valuable metals from cylindrical 18650-type spent lithium-ion batteries. In The 15th Japan/Korea Int. Symp. Resour. Recycl. Mater. Sci (pp. 1-10).
[81] Granata, G., Pagnanelli, F., Moscardini, E., Takacova, Z., Havlik, T., & Toro, L. (2012). Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: Accomplishment of European Guidelines by optimizing mechanical pre-treatment and solvent extraction operations. Journal of Power Sources, 212, 205-211.
[82] Chen, W. S., & Ho, H. J. (2018). Recovery of valuable metals from lithium-ion batteries NMC cathode waste materials by hydrometallurgical methods. Metals, 8(5), 321.
[83] Hu, X., Ma, B., He, F., Chen, Y., & Wang, C. (2022). Ammonia leaching process for selective extraction of nickel and cobalt from polymetallic mixed hydroxide precipitate. Journal of Environmental Chemical Engineering, 10(6), 108936.
[84] Takeno, N. (2005). Atlas of Eh-pH diagrams. Geological survey of Japan open file report, 419(102), 285.
[85] Tsakiroglou, C. D., Terzi, K., Aggelopoulos, C., & Theodoropoulou, M. (2017). A statistical shrinking core model to estimate the overall dechlorination rate of PCE by an assemblage of zero-valent iron nanoparticles. Chemical Engineering Science, 167, 191-203.
[86] Ait Brahim, J., Ait Hak, S., Achiou, B., Boulif, R., Beniazza, R., & Benhida, R. (2022). Kinetics and mechanisms of leaching of rare earth elements from secondary resources. Minerals Engineering, 177, 107351.
[87] Levenspiel, O. (1998). Chemical reaction engineering. John wiley & sons.
[88] Kumari, A., Sinha, M. K., Pramanik, S., & Sahu, S. K. (2018). Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects. Waste Management, 75, 486-498.
[89] Ghassa, S., Noaparast, M., Shafaei, S. Z., Abdollahi, H., Gharabaghi, M., & Boruomand, Z. (2017). A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy, 171, 362-373.
[90] Devi, N. B., Nathsarma, K. C., & Chakravortty, V. (2000). Separation of divalent manganese and cobalt ions from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272. Hydrometallurgy, 54(2-3), 117-131.
[91] Kursunoglu, S., & Kaya, M. (2019). Hydrometallurgical processing of nickel laterites-a brief overview on the use of solvent extraction and nickel/cobalt project for the separation and purification of nickel and cobalt. Bilimsel Madencilik Dergisi, 58(2), 131-144.
[92] Devi, N. B., Nathsarma, K. C., & Chakravortty, V. (1998). Separation and recovery of cobalt (II) and nickel (II) from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272. Hydrometallurgy, 49(1-2), 47-61.
[93] Swain, B., Jeong, J., Lee, J., & Lee, G. H. (2006). Separation of cobalt and lithium from mixed sulphate solution using Na-Cyanex 272. Hydrometallurgy, 84(3-4), 130-138.
[94] Ismail, W., Belal, A., Abdo, W., & El-Shaer, A. (2024). Investigating the physical and electrical properties of La2O3 via annealing of La (OH) 3. Scientific Reports, 14(1), 7716.
[95] Wu, Y., Chen, Y., & Zhou, J. (2013). La (OH) 3 nanorods and La2O3 nanoplates: facile synthesis and photoluminescence properties. Materials Letters, 95, 5-8.
[96] Kelzenberg, S., Eisenreich, N., Knapp, S., Koleczko, A., & Schuppler, H. (2018). Oxidation of manganese and decomposition of MnO2. In Fraunhofer-Institut für Chemische Technologie (International Annual Conference) 2018.
[97] Petersen, R. R., König, J., & Yue, Y. (2015). The mechanism of foaming and thermal conductivity of glasses foamed with MnO2. Journal of Non-Crystalline Solids, 425, 74-82.
[98] 何星融(2018),鋰三元電池廢正極材料有價金屬再生之研究. 2018,國立成功大學資源工程學系碩士論文。
[99] Cheng, B., Le, Y., Cai, W., & Yu, J. (2011). Synthesis of hierarchical Ni (OH) 2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. Journal of hazardous materials, 185(2-3), 889-897.
[100] Wang, H., Li, Z., Meng, Q., Duan, J., Xu, M., Lin, Y., & Zhang, Y. (2022). Ammonia leaching of valuable metals from spent lithium ion batteries in NH3-(NH4) 2SO4-Na2SO3 system. Hydrometallurgy, 208, 105809.
[101] Teixeira, L. A. C., Queiroz, J. P. L., & Marquez-Sarmiento, C. (2017). Oxidative precipitation of manganese from dilute waters. Mine Water and the Environment, 36(3), 452-456.
[102] Pietrelli, L., Bellomo, B., Fontana, D., & Montereali, M. R. (2002). Rare earths recovery from NiMH spent batteries. Hydrometallurgy, 66(1-3), 135-139.
[103] Ducret, J., & Barbeau, B. (2024). A revised digestion method to characterize manganese content in solids. MethodsX, 12, 102731.
[104] Abbas, S. A., & Jung, K. D. (2016). Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior. Electrochimica Acta, 193, 145-153.
[105] Song, Z., Han, X., Deng, Y., Zhao, N., Hu, W., & Zhong, C. (2017). Clarifying the controversial catalytic performance of Co (OH) 2 and Co3O4 for oxygen reduction/evolution reactions toward efficient Zn–air batteries. ACS Applied Materials & Interfaces, 9(27), 22694-22703.
校內:2030-08-12公開