| 研究生: |
葉俊吟 Yeh, Chun-Yin |
|---|---|
| 論文名稱: |
體表溫度連續監測之智慧穿戴裝置發展與驗證 Development and validation of wearable devices used for continuous monitoring of body surface temperature |
| 指導教授: |
柯乃熒
Ko, Nai-Ying |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 護理學系 Department of Nursing |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 體表溫度 、穿戴裝置 、驗證 、連續測量 |
| 外文關鍵詞: | body surface temperature, wearable device, validation, continuous monitoring |
| 相關次數: | 點閱:137 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:無論患者是否符合發燒標準,體溫變化被視為是疾病不良預後之重要表徵。目前,仍鮮少研究針對連續測量體表溫度之智慧穿戴裝置驗證與可行性進行探討。
目的:本研究目的為發展與驗證一用以連續測量體表溫度之智慧穿戴裝置—HEARThermo。包含:評估HEARThermo於連續測量體表溫度之信效度,並探討體表溫度變化之影響因子。
方法:本研究包含四個階段,分別於實驗室與人體進行實驗性與驗證性研究。第一階段實驗性研究以紅外線測溫儀每兩分鐘交替測量手部橈動脈區域、尺動脈區域與手腕表面體表溫度,並藉由重複測量變異數分析(repeated measures one-way analysis of variance)比較手上不同位置的體表溫度差異。第一階段驗證性研究於實驗室水浴槽中進行,以評估HEARThermo用以連續測量溫度的再測信度,並藉由線性回歸模型(linear regression models)校正每個HEARThermo測得數值。第二階段驗證性研究納入人體驗證,同時以HEARThermo 和紅外線測溫儀測量體表溫度,藉由組內相關係數(intraclass correlation coefficient, ICC)和Bland-Altman圖分析此兩種測量工具之效標效度與一致性。第二階段實驗性研究則包含兩個步驟,以了解不同室溫與活動強度下人體體表溫度變化與其相關因子,藉由多階層模型(Multilevel modeling, MLM)探討體表溫度變化之相關因子。
結果:第一階段實驗性研究共納入79位受試者,平均年齡為43.78±23.14歲,研究發現橈動脈區域與尺動脈區域的體表溫度均高於手腕表面(F=8.05, p <0.001)。而實驗室與人體皮膚上的兩階段驗證性研究表明,HEARThermo顯示出良好的再測信度(ICC = 0.96-0.98),並於20-27.9°C的室溫下與紅外線測溫儀呈現足夠的效標效度(ICC = 0.72)。使用溫度為16°C 至 40°C之水浴槽進行校正,其校正後測量誤差平均為−0.02°C。Bland–Altman圖顯示沒有可視化的系統性誤差,而HEARThermo 與紅外線測溫儀之誤差為1.51°C,其95%一致性界限位於−1.34至4.35°C之間。第二階段實驗性研究共納入66位受試者,平均年齡為39.47±19.02歲,研究發現當受試者靜坐休息時,年齡(β=−0.03, p=0.007)、室溫(β=0.71, p <0.001)及室內濕度(β=0.31, p <0.001)與體表溫度變化顯著相關;而受試者進行運動時,不同強度的運動(β=−1.36 - −0.39, p <0.001)為體表溫度降低唯一相關的主要因素。
結論:體表溫度的變化在運動期間的體溫調節中扮演重要的角色,而本研究發展並驗證用於連續測量體表溫度之創新智慧穿戴裝置,可作為未來應用智慧科技產品於臨床照護之參考。
Background: Variations in body temperature are highly informative regarding poor progress during an illness, regardless of whether people meet the criteria for fever. The feasibility of a wearable wrist device in continuous monitoring of body surface temperature has not been sufficiently investigated.
Objectives: This study is aimed toward providing evidence for developing and validating HEARThermo, an innovative wearable device, intended to continuously monitor body temperature, with specific aims to evaluate the reliability and validity of HEARThermo in monitoring body surface temperature and to investigate the factors associated with variations in body surface temperature.
Methods: This study includes four stages, including experimental and validation studies in the laboratory and with human subjects. Experimental study I was conducted to identify differences in body surface temperature measured by infrared skin thermometers at the radial artery region, ulnar artery region, and upper wrist, which were measured alternately every two minutes. A repeated measures one-way analysis of variance was used to identify the differences in body surface temperature for the different places on the hands. Validation study I was conducted in a laboratory setting to evaluate the test-retest reliability of HEARThermo for monitoring temperatures and to correct the values of each HEARThermo using linear regression models. Validation study II was conducted on human subjects to measure body surface temperatures using HEARThermo and the infrared skin thermometer simultaneously. The ICC and Bland-Altman plots were used to analyze the criterion validity and agreement between the two measurement tools. Experimental study II used an experimental method consisting of two steps. It was conducted to identify the factors associated with variations in body surface temperature under different room temperatures and levels of intensity of activity. MLM was used to explore the factors associated with variations in body surface temperature.
Results: A total of 79 participants with a mean age of 43.78±23.14 years were recruited in the Experimental study I. The body surface temperatures of both radial artery and ulnar artery were higher than those of the wrist surface (F=8.05, p <0.001). The two validation studies in the laboratory and on human skin indicated that HEARThermo showed good test-retest reliability (ICC=0.96-0.98) and adequate criterion validity with the infrared skin thermometers at room temperatures of 20-27.9°C (ICC=0.72). The corrected measurement bias averaged −0.02°C, which was calibrated using a water bath ranging in temperature from 16°C to 40°C. Bland–Altman plots showed no visualized systematic bias. HEARThermo had a bias of 1.51°C with 95% limit of agreement between −1.34 and 4.35°C. A total of 66 participants with a mean age of 39.47±19.02 years were recruited in the experimental study II. Age (β=−0.03, p=0.007), room temperature (β=0.71, p <0.001) and room humidity (β=0.31, p <0.001) were independent factors associated with variations in the body surface temperature of subjects at rest. During exercise, the intensity of activity was the only leading factor associated with decreased body surface temperature (β=−1.36 - −0.39, p <0.001).
Conclusions: Variations in body surface temperature play a significant role in thermoregulation during exercise. This study validated an innovative wearable device for continuous body surface temperature monitoring.
Acare Technology Co., Ltd. (2017). OxiSmarter I. Retrieved from http://www.acaretech.com/product_872346.html
Ajami, S., & Teimouri, F. (2015). Features and application of wearable biosensors in medical care. Journal of Research in Medical Sciences, 20(12), 1208-1215. doi:10.4103/1735-1995.172991
Alberti, C., Brun-Buisson, C., Chevret, S., Antonelli, M., Goodman, S. V., Martin, C., ... & Le Gall, J. R. (2005). Systemic inflammatory response and progression to severe sepsis in critically ill infected patients. American Journal of Respiratory and Critical Care Medicine, 171(5), 461-468. doi: 10.1164/rccm.200403-324OC
American College of Sports, Riebe, D., Ehrman, J. K., Liguori, G., & Magal, M. (2018). ACSM's guidelines for exercise testing and prescription (10th ed.). Philadelphia: Wolters Kluwer.
American Society for Surgery of the Hand (2019). Vessels. Retrieved from https://www.assh.org/handcare/Anatomy/Vessels
Ammer, K. (2009). Does neuromuscular thermography record nothing else but an infrared sympathetic skin response? Thermology International, 19, 107-108.
Appelboom, G., Camacho, E., Abraham, M. E., Bruce, S. S., Dumont, E. L., Zacharia, B. E., ... , & Connolly, E. S. (2014). Smart wearable body sensors for patient self-assessment and monitoring. Archives of Public Health, 72(28), 1-9. doi: 10.1186/2049-3258-72-28
Asadian, S., Khatony, A., Moradi, G., Abdi, A., & Rezaei, M. (2016). Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients. Medical Devices (Auckland, NZ), 9, 301-308. doi:10.2147/MDER.S109904
Banaee, H., Ahmed, M. U., & Loutfi, A. (2013). Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors (Basel), 13(12), 17472-17500. doi:10.3390/s131217472
Barnason, S., Williams, J., Proehl, J., Brim, C., Crowley, M., Leviner, S., . . . Storer, A. (2012). Emergency nursing resource: Non-invasive temperature measurement in the emergency department. Journal of Emergency Nursing, 38(6), 523-530. doi:10.1016/j.jen.2012.05.012
Bernard, V., Staffa, E., Mornstein, V., & Bourek, A. (2013). Infrared camera assessment of skin surface temperature--effect of emissivity. Physica Medical, 29(6), 583-591. doi:10.1016/j.ejmp.2012.09.003
Bertucci, W., Arfaoui, A., Janson, L., & Polidori, G. (2013). Relationship between the gross efficiency and muscular skin temperature of lower limb in cycling: A preliminary study. Computer Methods in Biomechanics and Biomedical Engineering, 16(Supplement 1), 114-115. doi:10.1080/10255842.2013.815902
Beurer. (2014). Beurer infrared forehead thermometer FT 50. Retrieved from http://www.beurer.com.tw/productsInfo.php?cls=N000004&id=26
Bijur, P. E., Shah, P. D., & Esses, D. (2016). Temperature measurement in the adult emergency department: oral, tympanic membrane and temporal artery temperatures versus rectal temperature. Emergency Medicine Journal, 33(12), 843-847. doi:10.1136/emermed-2015-205122
Blatteis, C. M. (2012). Age-dependent changes in temperature regulation - A mini review. Gerontology, 58(4), 289-295. doi:10.1159/000333148
Bracci, M., Ciarapica, V., Copertaro, A., Barbaresi, M., Manzella, N., Tomasetti, M., . . . Santarelli, L. (2016). Peripheral skin temperature and circadian biological clock in shift nurses after a day off. International Journal of Molecular Sciences, 17(5). doi:10.3390/ijms17050623
Buchan, C. A., Bravi, A., & Seely, A. J. (2012). Variability analysis and the diagnosis, management, and treatment of sepsis. Current Infectious Disease Reports, 14(5), 512-521. doi:10.1007/s11908-012-0282-4
Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C. (2007a). CNS 15042 Standard specification for infrared thermometers for intermittent determination of patient temperature. Retrieved from https://www.cnsonline.com.tw/?node=result&typeof=common&locale=zh_TW
Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C. (2007b). CNS 15043 Standard specification for electronic thermometer for intermittent determination of patient temperature. Retrieved from https://www.cnsonline.com.tw/?node=result&typeof=common&locale=zh_TW
Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C. (2018). 目前市面上常使用之體溫計的種類有那些?. Retrieved from https://www.bsmi.gov.tw/wSite/ct?xItem=1233&ctNode=4064&mp=1
Burnham, R. S., McKinley, R. S., & Vincent, D. D. (2006). Three types of skin-surface thermometers: A comparison of reliability, validity, and responsiveness. American Journal of Physical Medicine & Rehabilitation, 85(7), 553-558. doi:10.1097/01.phm.0000223232.32653.7f
Cambras, T., Castro-Marrero, J., Zaragoza, M. C., Diez-Noguera, A., & Alegre, J. (2018). Circadian rhythm abnormalities and autonomic dysfunction in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. PLoS One, 13(6), e0198106. doi:10.1371/journal.pone.0198106
Casa, D. J., Becker, S. M., Ganio, M. S., Brown, C. M., Yeargin, S. W., Roti, M. W., . . . Huggins, R. A. (2007). Validity of devices that assess body temperature during outdoor exercise in the heat. Journal of Athletic Training, 42(3), 333.
Chan, M., Esteve, D., Fourniols, J. Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137-156. doi:10.1016/j.artmed.2012.09.003
Charkoudian, N. (2010). Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. Journal of Applied Physiology, 109(4), 1221-1228. doi:10.1152/japplphysiol.00298.2010
Chester, J. G., & Rudolph, J. L. (2011). Vital signs in older patients: Age-related changes. Journal of the American Medical Directors Association, 12(5), 337-343. doi:10.1016/j.jamda.2010.04.009
Choi, J. H., & Loftness, V. (2012). Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations. Building and Environment, 58, 258-269. doi:10.1016/j.buildenv.2012.07.003
Chudecka, M., Lubkowska, A., & Kempinska-Podhorodecka, A. (2014). Body surface temperature distribution in relation to body composition in obese women. Journal of Thermal Biology, 43, 1-6. doi:10.1016/j.jtherbio.2014.03.001
Clifford, K. M., Dy-Boarman, E. A., Haase, K. K., Maxvill, K., Pass, S. E., & Alvarez, C. A. (2016). Challenges with diagnosing and managing sepsis in older adults. Expert Review of Anti-Infective Therapy, 14(2), 231-241. doi:10.1586/14787210.2016.1135052
Corbalán-Tutau, M. D., Madrid, J. A., Ordovás, J. M., Smith, C. E., Nicolás, F., & Garaulet, M. (2011). Differences in daily rhythms of wrist temperature between obese and normal-weight women: Associations with metabolic syndrome features. Chronobiology international, 28(5), 425-433. doi:10.3109/07420528.2011.574766
Costa, C. M. A., Moreira, D. G., Sillero-Quintana, M., Brito, C. J., de Azambuja Pussieldi, G., de Andrade Fernandes, A., . . . Bouzas Marins, J. C. (2018). Daily rhythm of skin temperature of women evaluated by infrared thermal imaging. Journal of Thermal Biology, 72, 1-9. doi:10.1016/j.jtherbio.2017.12.002
Cramer, M. N., & Jay, O. (2016). Biophysical aspects of human thermoregulation during heat stress. Autonomic Neuroscience: Basic and Clinical, 196, 3-13.doi: 10.1016/j.autneu.2016.03.001
Cuesta, D., Varela, M., Miro, P., Galdos, P., Abasolo, D., Hornero, R., & Aboy, M. (2007). Predicting survival in critical patients by use of body temperature regularity measurement based on approximate entropy. Medical & Biological Engineering & Computing, 45(7), 671-678. doi:10.1007/s11517-007-0200-3
Del Bene, V. E. (1990). Temperature. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.), Clinical methods: The history, physical, and laboratory examinations. (3rd ed., pp. 990). Boston: Butterworths.
de Andrade Fernandes, A., dos Santos Amorim, P. R., Brito, C. J., Sillero-Quintana, M., & Marins, J. C. B. (2016). Regional skin temperature response to moderate aerobic exercise measured by infrared thermography. Asian journal of sports medicine, 7(1). e29243. doi:10.5812/asjsm.29243
Dias, D., & Paulo Silva Cunha, J. (2018). Wearable health devices-vital sign monitoring, systems and technologies. Sensors (Basel), 18(8). doi:10.3390/s18082414
Downey, C. L., Chapman, S., Randell, R., Brown, J. M., & Jayne, D. G. (2018). The impact of continuous versus intermittent vital signs monitoring in hospitals: A systematic review and narrative synthesis. International Journal of Nursing Studies, 84, 19-27. doi:10.1016/j.ijnurstu.2018.04.013
Doyle, F., Zehner, W. J., & Terndrup, T. E. (1992). The effect of ambient temperature extremes on tympanic and oral temperatures. The American journal of emergency medicine, 10(4), 285-289. doi:10.1016/0735-6757(92)90003-G
Dr.AV, N. (2017). GM-108. Retrieved from http://www.drav.com.tw/mod/product/index.php?REQUEST_ID=cfe02c2cd7fef06f3e683f043be0bdeaa9e896488a2ef852ca9cddc75a18390c
Drewry, A. M., Fuller, B. M., Bailey, T. C., & Hotchkiss, R. S. (2013). Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: A case-control study. Critical Care, 17(5), R200. doi:10.1186/cc12894
Duffy, J. F., Cain, S. W., Chang, A. M., Phillips, A. J., Munch, M. Y., Gronfier, C., . . . Czeisler, C. A. (2011). Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proceedings of the National Academy of Sciences, 108(Supplement 3), 15602-15608. doi:10.1073/pnas.1010666108
Dzarr, A. A., Kamal, M., & Baba, A. A. (2009). A comparison between infrared tympanic thermometry, oral and axilla with rectal thermometry in neutropenic adults. European Journal of Oncology Nursing, 13(4), 250-254. doi: 10.1016/j.ejon.2009.03.006
Elitech. (2016). rc-4-instructions. Retrieved from http://www.elitechlog.com/wp-content/manuals/RC-4-RC-4HA-RC-4HC-instructions.pdf
Evertsen, J., Baumgardner, D. J., Regnery, A., & Banerjee, I. (2010). Diagnosis and management of pneumonia and bronchitis in outpatient primary care practices. Primary Care Respiratory Journal, 19(3), 237-241. doi:10.4104/pcrj.2010.00024
Fernández-Cuevas, I., Bouzas Marins, J. C., Arnáiz Lastras, J., Gómez Carmona, P. M., Piñonosa Cano, S., García-Concepción, M. Á., & Sillero-Quintana, M. (2015). Classification of factors influencing the use of infrared thermography in humans: A review. Infrared Physics & Technology, 71, 28-55. doi:10.1016/j.infrared.2015.02.007
Fox, R. H., Lofstedt, B. E., Woodward, P. M., Eriksson, E., & Werkstrom, B. (1969). Comparison of thermoregulatory function in men and women. Journal of Applied Physiology, 26(4), 444-453. doi:10.1152/jappl.1969.26.4.444
Ganio, M. S., Brown, C. M., Casa, D. J., Becker, S. M., Yeargin, S. W., McDermott, B. P., . . . Maresh, C. M. (2009). Validity and reliability of devices that assess body temperature during indoor exercise in the heat. Journal of Athletic Training, 44(2), 124-135. doi: 10.4085/1062-6050-44.2.124
Geijer, H., Udumyan, R., Lohse, G., & Nilsagard, Y. (2016). Temperature measurements with a temporal scanner: Systematic review and meta-analysis. BMJ Open, 6(3), e009509. doi:10.1136/bmjopen-2015-009509
Giuliano, K. K. (2007). Physiological monitoring for critically ill patients: testing a predictive model for the early detection of sepsis. American Journal of Critical Care, 16(2), 122-130.
Gunes, U. Y., & Zaybak, A. (2008). Does the body temperature change in older people? Journal of Clinical Nursing, 17(17), 2284-2287. doi:10.1111/j.1365-2702.2007.02272.x
Iyriboz, Y., Powers, S., Morrow, J., Ayers, D., & Landry, G. (1991). Accuracy of pulse oximeters in estimating heart rate at rest and during exercise. British Journal of Sports Medicine, 25(3), 162-164. doi:10.1136/bjsm.25.3.162
Jaimes, F., Arango, C., Ruiz, G., Cuervo, J., Botero, J., Velez, G., . . . Machado, F. (2004). Predicting bacteremia at the bedside. Clinical Infectious Diseases, 38(3), 357-362. doi:10.1086/380967
Jang, T. W., Kim, H., Kang, S. H., Choo, S. H., Lee, I. S., & Choi, K. H. (2017). Circadian rhythm of wrist temperature among shift workers in South Korea: A prospective observational study. International Journal of Environmental Research and Public Health, 14(10). doi:10.3390/ijerph14101109
Jhajharia, S., Pal, S. K., & Verma, S. (2014). Wearable computing and its application. International Journal of Computer Science and Information Technologies, 5(4), 5700-5704.
Kaciuba-Uscilko, H., & Grucza, R. (2001). Gender differences in thermoregulation. Current Opinion in Clinical Nutrition & Metabolic Care, 4(6), 533-536. doi: 10.1097/00075197-200111000-00012
Kellogg, D. L., Jr., Johnson, J. M., & Kosiba, W. A. (1991). Control of internal temperature threshold for active cutaneous vasodilation by dynamic exercise. Journal of Applied Physiology, 71(6), 2476-2482. doi:10.1152/jappl.1991.71.6.2476
Kelly, G. (2006). Body temperature variability (Part 1): A review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging. Alternative Medicine Review, 11(4), 278-293.
Kelly, G. S. (2007). Body temperature variability (Part 2): Masking influences of body temperature variability and a review of body temperature variability in disease. Alternative Medicine Review, 12(1), 49-62.
Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A., & Arias, A. C. (2016). Monitoring of vital signs with flexible and wearable medical devices. Advanced Materials, 28(22), 4373-4395. doi:10.1002/adma.201504366
Kushimoto, S., Gando, S., Saitoh, D., Mayumi, T., Ogura, H., Fujishima, S., . . . Group, J. S. R. S. (2013). The impact of body temperature abnormalities on the disease severity and outcome in patients with severe sepsis: An analysis from a multicenter, prospective survey of severe sepsis. Critical Care, 17(6), R271. doi:10.1186/cc13106
Kushimoto, S., Yamanouchi, S., Endo, T., Sato, T., Nomura, R., Fujita, M., . . . Sato, T. (2014). Body temperature abnormalities in non-neurological critically ill patients: A review of the literature. Journal of Intensive Care, 2(1), 14. doi:10.1186/2052-0492-2-14
Lack, L. C., Gradisar, M., Van Someren, E. J., Wright, H. R., & Lushington, K. (2008). The relationship between insomnia and body temperatures. Sleep Medicine Reviews, 12(4), 307-317. doi:10.1016/j.smrv.2008.02.003
Liu, Y., Wang, L., Liu, J., & Di, Y. (2013). A study of human skin and surface temperatures in stable and unstable thermal environments. Journal of Thermal Biology, 38(7), 440-448. doi:10.1016/j.jtherbio.2013.06.006
Lu, S. H., & Dai, Y. T. (2009). Normal body temperature and the effects of age, sex, ambient temperature and body mass index on normal oral temperature: a prospective, comparative study. International Journal of Nursing Studies, 46(5), 661-668. doi:10.1016/j.ijnurstu.2008.11.006
Mackowiak, P. A., & Wasserman, S. S. (1995). Physicians' perceptions regarding body temperature in health and disease. Southern Medical Journal, 88(9), 934-938. doi:10.1097/00007611-199509000-00009
MacRae, B. A., Annaheim, S., Spengler, C. M., & Rossi, R. M. (2018). Skin temperature measurement using contact thermometry: A systematic review of setup variables and their effects on measured values. Frontiers in Physiology, 9, 29. doi:10.3389/fphys.2018.00029
Marins, J. C., Fernandes, A. A., Cano, S. P., Moreira, D. G., da Silva, F. S., Costa, C. M., . . . Sillero-Quintana, M. (2014). Thermal body patterns for healthy Brazilian adults (male and female). Journal of Thermal Biology, 42, 1-8. doi:10.1016/j.jtherbio.2014.02.020
Martinez-Nicolas, A., Ortiz-Tudela, E., Rol, M. A., & Madrid, J. A. (2013). Uncovering different masking factors on wrist skin temperature rhythm in free-living subjects. PLoS One, 8(4), e61142. doi:10.1371/journal.pone.0061142
Martinez-Nicolas, A., Guaita, M., Santamaria, J., Montserrat, J. M., Rol, M. A., & Madrid, J. A. (2017). Circadian impairment of distal skin temperature rhythm in patients with sleep-disordered breathing: The effect of CPAP. Sleep, 40(6). doi:10.1093/sleep/zsx067
Merla, A., Mattei, P. A., Di Donato, L., & Romani, G. L. (2010). Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Annals of Biomedical Engineering, 38(1), 158-163. doi:10.1007/s10439-009-9809-8
Mohr, N. M., Hotchkiss, R. S., Micek, S. T., Durrani, S., & Fuller, B. M. (2011). Change in temperature profile may precede fever and be an early indicator of sepsis: A case report. Shock, 36(3), 318-320. doi:10.1097/SHK.0b013e318224f5ee
Morrison, S. F. (2016). Central control of body temperature. F1000Research, 5, 880. doi:10.12688/f1000research.7958.1
Nakamura, K. (2011). Central circuitries for body temperature regulation and fever. AJP Regulatory Integrative and Comparative Physiology, 301(5), R1207-R1228. doi:10.1152/ajpregu.00109.2011
Nakayama, T., Ohnuki, Y., & Kanosue, K. (1981). Fall in skin temperature during exercise observed by thermography. The Japanese Journal of Physiology, 31(5), 757-762. doi: 10.2170/jjphysiol.31.757
Neves, E. B., Salamunes, A. C. C., de Oliveira, R. M., & Stadnik, A. M. W. (2017). Effect of body fat and gender on body temperature distribution. Journal of Thermal Biology, 70, 1-8. doi:10.1016/j.jtherbio.2017.10.017
Niu, H. H., Lui, P. W., Hu, J. S., Ting, C. K., Yin, Y. C., Lo, Y. L., . . . Lee, T. Y. (2001). Thermal symmetry of skin temperature: normative data of normal subjects in Taiwan. Chinese Medical Journal (Taipei), 64(8), 459-468.
Niven, D. J., Gaudet, J. E., Laupland, K. B., Mrklas, K. J., Roberts, D. J., & Stelfox, H. T. (2015). Accuracy of peripheral thermometers for estimating temperature: A systematic review and meta-analysis. Annals of Internal Medicine, 163(10), 768-777. doi:10.7326/M15-1150
Obermeyer, Z., Samra, J. K., & Mullainathan, S. (2017). Individual differences in normal body temperature: Longitudinal big data analysis of patient records. BMJ, 359, j5468. doi:10.1136/bmj.j5468
O'Grady, N. P., Barie, P. S., Bartlett, J. G., Bleck, T., Carroll, K., Kalil, A. C., . . . Infectious Diseases Society of, A. (2008). Guidelines for evaluation of new fever in critically ill adult patients: 2008 update from the American College of Critical Care Medicine and the Infectious Diseases Society of America. Critical Care Medicine, 36(4), 1330-1349. doi:10.1097/CCM.0b013e318169eda9
OMRON HEALTHCARE TAIWAN Co., Ltd. (2017). OMRON Infrared Ear Themometer. Retrieved from https://www.omronhealthcare.com.tw/product/ins.php?index_prm_id=5&index_id=41
Opal, S. M., Girard, T. D., & Ely, E. W. (2005). The immunopathogenesis of sepsis in elderly patients. Clinical Infectious Diseases, 41(supplement 7), S504-S512. doi:10.1086/432007
Paes, B. F., Vermeulen, K., Brohet, R. M., van der Ploeg, T., & de Winter, J. P. (2010). Accuracy of tympanic and infrared skin thermometers in children. Archives of Disease in Childhood, 95(12), 974-978. doi:10.1136/adc.2010.185801
Pandian, P. S., Mohanavelu, K., Safeer, K. P., Kotresh, T. M., Shakunthala, D. T., Gopal, P., & Padaki, V. C. (2008). Smart Vest: Wearable multi-parameter remote physiological monitoring system. Medical Engineering & Physics, 30(4), 466-477. doi:10.1016/j.medengphy.2007.05.014
Pascoe, D. & Fisher, G. (2009). Comparison of measuring sites for the assessment of body temperature. Thermology International, 19, 35-42.
Petrofsky, J. S., Lohman, E. III, Suh, H. J., Garcia, J., Anders, A., Sutterfield, C., & Khandge, C. (2006). The effect of aging on conductive heat exchange in the skin at two environmental temperatures. Medical science monitor, 12(10), CR400-CR408.
Popovic, Z., Momenroodaki, P., & Scheeler, R. (2014). Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine, 52(10), 118-125. doi:10.1109/mcom.2014.6917412
Rausch, J. L., Johnson, M. E., Corley, K. M., Hobby, H. M., Shendarkar, N., Fei, Y., . . . Leibach, F. H. (2003). Depressed patients have higher body temperature: 5-HT transporter long promoter region effects. Neuropsychobiology, 47(3), 120-127. doi:10.1159/000070579
Refinetti, R., & Menaker, M. (1992). The circadian rhythm of body temperature. Physiology & Behavior, 51(3), 613-637. doi: 10.1016/0031-9384(92)90188-8
Rolls, K., Wrightson, D., Schacht, S., Keating, L., Irwin, S., & Walker, S., (2013). Temperature measurement for critically ill adults: A clinical practice guideline; agency for clinical innovation version 1. Austalia: Chatswood, NSW.
Romanovsky, A. A. (2014). Skin temperature: its role in thermoregulation. Acta Physiologica, 210(3), 498-507. doi:10.1111/apha.12231
Rubio-Sastre, P., Gomez-Abellan, P., Martinez-Nicolas, A., Ordovas, J. M., Madrid, J. A., & Garaulet, M. (2014). Evening physical activity alters wrist temperature circadian rhythmicity. Chronobiology International, 31(2), 276-282. doi:10.3109/07420528.2013.833215
Salamunes, A. C. C., Stadnik, A. M. W., & Neves, E. B. (2017). The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography. Journal of Thermal Biology, 66, 1-9. doi:10.1016/j.jtherbio.2017.03.006
Sampson, M., Hickey, V., Huber, J., Alonso, P. B., Davies, S. M., & Dandoy, C. E. (2019). Feasibility of continuous temperature monitoring in pediatric immunocompromised patients: A pilot study. Pediatric Blood & Cancer, 66(6), e27723. doi:10.1002/pbc.27723
Sarabia, J. A., Rol, M. A., Mendiola, P., & Madrid, J. A. (2008). Circadian rhythm of wrist temperature in normal-living subjects A candidate of new index of the circadian system. Physiology & Behavior, 95(4), 570-580. doi:10.1016/j.physbeh.2008.08.005
Schlader, Z. J., Simmons, S. E., Stannard, S. R., & Mundel, T. (2011). Skin temperature as a thermal controller of exercise intensity. European Journal of Applied Physiology, 111(8), 1631-1639. doi:10.1007/s00421-010-1791-1
Schlader, Z. J., Stannard, S. R., & Mundel, T. (2010). Human thermoregulatory behavior during rest and exercise - A prospective review. Physiology & Behavior, 99(3), 269-275. doi:10.1016/j.physbeh.2009.12.003
Shilaih, M., Goodale, B. M., Falco, L., Kubler, F., De Clerck, V., & Leeners, B. (2018). Modern fertility awareness methods: Wrist wearables capture the changes of temperature associated with the menstrual cycle. Bioscience Reports, 38(6). doi:10.1042/BSR20171279
Sim, S. Y., Koh, M. J., Joo, K. M., Noh, S., Park, S., Kim, Y. H., & Park, K. S. (2016). Estimation of thermal sensation based on wrist skin temperatures. Sensors (Basel), 16(4), 420. doi:10.3390/s16040420
Smith, A. D., Crabtree, D. R., Bilzon, J. L., & Walsh, N. P. (2010). The validity of wireless iButtons and thermistors for human skin temperature measurement. Physiological Measurement, 31(1), 95-114. doi:10.1088/0967-3334/31/1/007
Sund-Levander, M., Forsberg, C., & Wahren, L. K. (2002). Normal oral, rectal, tympanic and axillary body temperature in adult men and women: A systematic literature review. Scandinavian Journal of Caring Sciences, 16(2), 122-128. doi:10.1046/j.1471-6712.2002.00069.x
Sund-Levander, M., & Grodzinsky, E. (2009). Time for a change to assess and evaluate body temperature in clinical practice. International Journal of Nursing Practice, 15(4), 241-249. doi:10.1111/j.1440-172X.2009.01756.x
Tamura, T., Huang, M., & Togawa, T. (2018). Current developments in wearable thermometers. Advanced Biomedical Engineering, 7(0), 88-99. doi:10.14326/abe.7.88
TANITA. (2012). Segmental body composition monitor. Retrieved from https://tanita.eu/media/wysiwyg/manuals/home-use-body-composition-monitors/bc-545n-instruction-manual.pdf
Taylor, N. A., Machado-Moreira, C., van den Heuvel, A., Caldwell, J., Taylor, E. A., & Tipton, M. J. (2009). The roles of hands and feet in temperature regulation in hot and cold environments. Paper presented at the Thirteenth International Conference on Environmental Ergonomics, Boston, USA.
Taylor, N. A., Tipton, M. J., & Kenny, G. P. (2014). Considerations for the measurement of core, skin and mean body temperatures. Journal of Thermal Biology, 46, 72-101. doi:10.1016/j.jtherbio.2014.10.006
Tehrani, Kiana, & Michael, A. (2014). Wearable technology and wearable devices: Everything you need to know. Retrieved from http://www.wearabledevices.com/what-is-a-wearable-device/
Torii, M., Yamasaki, M., Sasaki, T., & Nakayama, H. (1992). Fall in skin temperature of exercising man. British Journal of Sports Medicine, 26(1), 29-32. doi:10.1136/bjsm.26.1.29
van Marken Lichtenbelt, W. D., Daanen, H. A., Wouters, L., Fronczek, R., Raymann, R. J., Severens, N. M., & Van Someren, E. J. (2006). Evaluation of wireless determination of skin temperature using iButtons. Physiology & Behavior, 88(4-5), 489-497. doi:10.1016/j.physbeh.2006.04.026
Varela, M., Jimenez, L., & Farina, R. (2003). Complexity analysis of the temperature curve: New information from body temperature. European Journal of Applied Physiology, 89(3), 230-237. doi:10.1007/s00421-002-0790-2
Varela, M., Calvo, M., Chana, M., Gomez-Mestre, I., Asensio, R., & Galdos, P. (2005). Clinical implications of temperature curve complexity in critically ill patients. Critical care medicine, 33(12), 2764-2771. doi:10.1097/01.CCM.0000190157.64486.03
Varela, M., Churruca, J., Gonzalez, A., Martin, A., Ode, J., & Galdos, P. (2006). Temperature curve complexity predicts survival in critically ill patients. American Journal of Respiratory and Critical Care Medicine, 174(3), 290-298. doi:10.1164/rccm.200601-058OC
Varela, M., Cuesta, D., Madrid, J. A., Churruca, J., Miro, P., Ruiz, R., & Martinez, C. (2009). Holter monitoring of central and peripheral temperature: possible uses and feasibility study in outpatient settings. Journal of Clinical Monitoring and Computing, 23(4), 209-216. doi:10.1007/s10877-009-9184-x
Varela, M., Ruiz-Esteban, R., Martinez-Nicolas, A., Cuervo-Arango, J. A., Barros, C., & Delgado, E. G. (2011). 'Catching the spike and tracking the flow': Holter-temperature monitoring in patients admitted in a general internal medicine ward. International Journal of Clinical Practice, 65(12), 1283-1288. doi:10.1111/j.1742-1241.2011.02794.x
Walter, E. J., Hanna-Jumma, S., Carraretto, M., & Forni, L. (2016). The pathophysiological basis and consequences of fever. Critical Care, 20(1), 200. doi:10.1186/s13054-016-1375-5
Wang, L., & Hui, S. S. (2015). Validity of four commercial bioelectrical impedance scales in measuring body fat among Chinese children and adolescents. BioMed Research International,, 2015, 614858. doi:10.1155/2015/614858
Webb, R. C., Bonifas, A. P., Behnaz, A., Zhang, Y., Yu, K. J., Cheng, H., . . . Rogers, J. A. (2013). Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Materials, 12(10), 938-944. doi:10.1038/nmat3755
Weiskopf, D., Weinberger, B., & Grubeck-Loebenstein, B. (2009). The aging of the immune system. Transplant international,, 22(11), 1041-1050. doi:10.1111/j.1432-2277.2009.00927.x
Wikipedia contributors. (2018, 20 August). Thermistor. Retrieved from https://en.wikipedia.org/w/index.php?title=Thermistor&oldid=855705529
Wikipedia contributors. (2019, 23 May). Infrared. Retrieved from https://en.wikipedia.org/w/index.php?title=Infrared&oldid=898488973
Xu, X., Karis, A. J., Buller, M. J., & Santee, W. R. (2013). Relationship between core temperature, skin temperature, and heat flux during exercise in heat. European Journal of Applied Physiology, 113(9), 2381-2389. doi:10.1007/s00421-013-2674-z
Yeh, C. Y., Chen, P. L., Chuang, K. T., Shu, Y. C., Chien, Y. W., Perng, G. C., . . . Ko, N. Y. (2017). Symptoms associated with adverse dengue fever prognoses at the time of reporting in the 2015 dengue outbreak in Taiwan. PLoS Neglected Tropical Diseases, 11(12), e0006091. doi:10.1371/journal.pntd.0006091
Zaproudina, N., Varmavuo, V., Airaksinen, O., & Narhi, M. (2008). Reproducibility of infrared thermography measurements in healthy individuals. Physiological Measurement, 29(4), 515-524. doi:10.1088/0967-3334/29/4/007
Zontak, A., Sideman, S., Verbitsky, O., & Beyar, R. (1998). Dynamic thermography: analysis of hand temperature during exercise. Annals of Biomedical Engineering, 26(6), 988-993. doi:10.1114/1.33