簡易檢索 / 詳目顯示

研究生: 廖婉如
Liao, Wan-Ru
論文名稱: NDPK-A藉由FBP-1調控c-myc的轉錄及神經細胞的分化
NDPK-A regulates c-myc transcription and involves in neuronal differentiation via FBP-1
指導教授: 張玲
Chang, Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 57
中文關鍵詞: NDPK-Ac-mycFBP-1神經細胞分化神經母細胞瘤
外文關鍵詞: NDPK-A,, c-myc, FBP-1, neuronal differentiation, neuroblastoma
相關次數: 點閱:138下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經母細胞瘤的形成主要是由於神經嵴細胞無法正常分化成交感神經系統所產生的胚胎腫瘤。NDPK-A由nm23-H1基因編碼,在神經母細胞瘤中扮演促進腫瘤轉移的功能。然而,其分子機制目前還未知。實驗室先前發現在神經母細胞瘤NB69細胞與子宮頸癌HeLa細胞中NDPK-A會結合至c-myc基因啟動子上的nuclease hypersensitive element (NHE) III1,進而抑制了c-myc基因啟動子的活性。此外,發現c-myc啟動子NHE III1上游也參與NDPK-A所調控抑制的c-myc的轉錄。基於實驗室先前的cDNA微陣列數據,發現FBP-1是一個可能的調控因子。FBP-1已知結合於c-myc的啟動子的上游區域(FUSE)進而促進c-myc基因的轉錄。在神經母細胞瘤SH-SY5Y細胞中抑制NDPK-A的表達則增加c-myc的轉錄與FBP-1的表現。另一方面,SH-SY5Y細胞中抑制FBP-1的表達會降低的c-myc的表現,進一步也發現c-myc的表現的降低也會受到異位表達NDPK-A的影響。而在SH-SY5Y細胞中加入視黃酸 (retinoic acid)誘導神經細胞分化的過程中,c-myc表達下降,FBP-1和nm23-H1也下降。另外,抑制FBP-1的表達會增加視黃酸誘導的神經細胞分化,而抑制NDPK-A 的表現則會降低神經細胞的分化。雖然異位表達NDPK-A會增加視黃酸誘導的神經細胞分化,但同時抑制FBP-1的表現未能進一步提升神經細胞分化。另外也發現異位表達NDPK-A 會抑制其network 之可能成員,如HOXA9、RIN2及RIT2,在表現下降時所增加的神經分化。已知的是,c-myc在爪蟾神經嵴的發育中扮演重要的角色。在mRNA全覆式原位雜交實驗中發現nm23-H1與c-myc的同源基因nme2b1和myca在斑馬魚早期發育過程的表現位置與時間極為相似。因而,在斑馬魚中nme2b1也可能調控myca的基因的轉錄。以上的研究結論是,FBP-1參與NDPK-A所調控的c-myc基因轉錄和神經元分化。與腫瘤轉移有關的NDPK-A過度表現藉由導致c-myc基因轉錄的失調,很可能抑制有高度轉移及侵襲能力的早期神經嵴細胞的正常分化,因而產生高侵襲力的神經母細胞瘤。

    Neuroblastoma is an embryonic tumor arising from neural crest cells that fail to differentiate into the sympathetic nervous system. Encoded by the nm23-H1 gene, human NDPK-A acts as a metastasis promoter in neuroblastoma. However, its molecular mechanism is largely unknown. Our lab has found that NDPK-A binds to nuclease hypersensitive element (NHE) III1 in the c-myc promoter and down-regulates the c-myc promoter activity in neuroblastoma NB69 and non-neuroblastoma HeLa cells. In addition, an element upstream of NHE III1 in the c-myc promoter is also involved in NDPK-A mediated down-regulation of c-myc transcription. Based on the cDNA microarray data in our lab, FBP-1 was identified as a potential collaborator of NDPK-A since it is known to bind to a single-stranded far upstream element (FUSE) in the c-myc promoter and activates c-myc transcription. In this study, knocking down NDPK-A expression increased c-myc transcription and FBP-1 expression in neuroblastoma SH-SY5Y cells. On the other hand, knockdown of FBP-1 expression reduced the c-myc promoter activity, and the latter was further decreased by ectopic NDPK-A expression in NB69 and SH-SY5Y cells. Moreover, the expression of c-myc, FBP-1 and nm23-H1 was down-regulated during neuronal differentiation of SH-SY5Y cells as induced by retinoic acid (RA). Although knockdown of FBP-1 expression increased RA-induced neuronal differentiation of SH-SY5Y cells, knockdown of NDPK-A expression decreased such differentiation. RA-induced neuronal differentiation was increased by ectopic expression of NDPK-A, but failed to be further elevated by knocking down FBP-1 expression. Furthermore, ectopic NDPK-A also abrogated neuronal differentiation of SH-SY5Y cells enhanced by knocking down the expression of candidates in the NDPK-A network, such as HOXA9, RIN2, and RIT2. It is known that c-Myc participates in neural crest development in Xenopus. Based on whole mount in-situ hybridization, nme2b1 (a highly homologous nm23-H1 ortholog) and myca (a c-myc ortholog) transcripts were spatially and temporally co-localized during early development of zebrafish, indicating a potential role of NME2b1 in regulating myca transcription. In conclusion, FBP-1 was involved in NDPK-A mediated regulation of c-myc transcription and neuronal differentiation. By deregulating c-myc transcription, metastasis-associated NDPK-A overexpression likely arrest neural crest at its migratory/invasive stage during differentiation into sympathetic neurons, thereby leading to aggressive neuroblastoma.

    ABSTRACT-------------------------------------------------------------------------------------Ⅰ-Ⅱ 摘要-----------------------------------------------------------------------------------------------Ⅲ-Ⅳ 致謝---------------------------------------------------------------------------------------------------Ⅴ TABLE OF CONTENTS----------------------------------------------------------------------Ⅵ-Ⅸ 1. INTRODUCTION 1.1 Neuroblastoma---------------------------------------------------------------------------1 1.2 Human NM23/NDP Kinase---------------------------------------------------------1-2 1.3 c-myc-----------------------------------------------------------------------------------2-3 1.4 FBP-1(far upstream element (FUSE)binding protein 1) ------------------------3-4 1.5 Neural crest development--------------------------------------------------------------4 1.6 The zebrafish animal model---------------------------------------------------------4-5 1.7 Hypothesis--------------------------------------------------------------------------------5 2. MATERIALS AND METHODS 2.1 Cell culture-------------------------------------------------------------------------------6 2.2 Plasmid constructs-----------------------------------------------------------------------6 2.3 Lentiviral gene transfer---------------------------------------------------------------6-7 2.4 Transient transfection and promoter activity assay-------------------------------7-8 2.5 β-Galactosidase (β-GAL) assay-------------------------------------------------------8 2.6 Dual-Luciferase assay----------------------------------------------------------------8-9 2.7 Western blot analysis-------------------------------------------------------------------9 2.8 Reverse-transcription polymerase chain reaction (RT-PCR) --------------------10 2.9 Quantitative real-time PCR(qPCR) ---------------------------------------------10-11 2.10 Measuring neurite outgrowth --------------------------------------------------------11 2.11 Cytoplasmic/nuclear fractionation-----------------------------------------------11-12 2.12 Fish care and maintenance------------------------------------------------------------12 2.13 In vitro RNA synthesis------------------------------------------------------------12-13 2.14 Whole mount in situ hybridization ---------------------------------------------13-14 3. RESULTS 3.1 NDPK-A modulates c-myc expression in human neuroblastoma cells ----------------------------------------------------------------------------------------15-16 3.2 NDPK-A modulates FBP-1 expression in human neuroblastoma cells --------------------------------------------------------------------------------------------16 3.3 Co-regulation of c-myc transcription by NDPK-A and FBP-1 in human neuroblastoma SH-SY5Y and NB69 cells--------------------------------------16-17 3.4 NDPK-A and FBP-1 are involved in retinoic acid (RA)-induced neuronal differentiation of SH-SY5Y cells-------------------------------------------------17-18 3.5 Candidates in the NDPK-A network are also involved in RA-induced neuronal differentiation of neuroblastoma SH-SY5Y cells------------------------------18-20 3.6 Spatial and temporal co-expression of zebrafish orthologs of nm23-H1 and c-myc --------------------------------------------------------------------------------20-21 4. DISCUSSION-----------------------------------------------------------------------------22-26 5. CONCLUSION-------------------------------------------------------------------------------27 6. FIGURES -------------------------------------------------------------------------------------28 Figure.1 NDPK-A modulates c-myc transcription in human neuroblastoma cells. -----------------------------------------------------------------------------------------28-29 Figure.2 NDPK-A modulates FBP-1 expression in human neuroblastoma cells. ---------------------------------------------------------------------------------------------30 Figure.3 Knockdown of FBP-1 expression decreases c-myc transcription in human neuroblastoma SH-SY5Y and NB69 cells ------------------------------------------31 Figure.4 Co-regulation of c-myc transcription by NDPK-A and FBP-1 in human neuroblastoma cells. -------------------------------------------------------------------32 Figure.5 Down-regulation of c-myc, NDPK-A and FBP-1 expression during retinoic acid (RA)-induced neuronal differentiation of SH-SY5Y cells. ---------------------------------------------------------------------------------------------33 Figure.6 NDPK-A and FBP-1 are involved in retinoic acid-induced neuronal differentiation of SH-SY5Y and derivatives. -----------------------------------34-35 Figure.7 The effect of the role of HOXA9, IGFBP6, RXRG, RIN2 or RIT2 in retinoic acid (RA)-induced neuronal differentiation of SH-SY5Y.--------------36 Figure.8 The effect of NDPK-A on the role of HOXA9, IGFBP6, RXRG, RIN2 or RIT2 in retinoic acid (RA)-induced neuronal differentiation of SH-SY5Y derivatives. --------------------------------------------------------------------------37-38 Figure.9 The lateral views of spatial-temporal expression of NDPK-A, c-myc, sox10, tyrosine hydroxylase orthologs during early development of zebrafish. ---------------------------------------------------------------------------------------------39 Figure.10 The dorsal views of spatial-temporal expression of NDPK-A, c-myc, sox10, tyrosine hydroxylase orthologs during early development of zebrafish. --------------------------------------------------------------------------------------------40 7. TABLES---------------------------------------------------------------------------------------41 Table.1 The list of shRNA clones used in this study. ---------------------------------41 Table.2 The list of antibodies used in this study. --------------------------------------42 Table.3 The list of primers used for RT-PCR and real-time PCR. ------------------43 8. APPENDICES--------------------------------------------------------------------------------44 Appendix 1. Selected targets in the NDPK-A network based on a shRNA screen. ---------------------------------------------------------------------------------------------44 Appendix 2. The construct of myc promoter for luciferase reporter assay ---------------------------------------------------------------------------------------------45 Appendix 3. The map of myca probe for whole mount in-situ hybridization ---------------------------------------------------------------------------------------------46 Appendix 4. The construct of nme2b1 probe for whole mount in-situ hybridization. ---------------------------------------------------------------------------------------------47 Appendix 5. The construct of SOX10 probe for whole mount in-situ hybridization. ---------------------------------------------------------------------------------------------48 Appendix 6. Reagents used for synthesizing RNA probes by in-vitro transcription. ---------------------------------------------------------------------------------------------49 Appendix 7. Proteinase K digestion and the buffers for whole mount in-situ hybridization. ---------------------------------------------------------------------------49 Appendix 8. The data sheet of the condition setting for measuring neurite outgrowth by MetaXpress software. -------------------------------------------------50 9. REFERENCES--------------------------------------------------------------------------- 51-57

    1. Brodeur, G.M., Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer, 2003. 3(3): p. 203-216.
    2. Howman-Giles, R., et al., Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med, 2007. 37(4): p. 286-302.
    3. Brodeur, G.M., et al., Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol, 1993. 11(8): p. 1466-77.
    4. Nakagawara, A. and M. Ohira, Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Letters. 204(2): p. 213-224.
    5. Maris, J.M., et al., Neuroblastoma. The Lancet. 369(9579): p. 2106-2120.
    6. Attiyeh, E.F., et al., Chromosome 1p and 11q Deletions and Outcome in Neuroblastoma. New England Journal of Medicine, 2005. 353(21): p. 2243-2253.
    7. Brodeur, G.M., et al., Molecular analysis and clinical significance of N-myc amplification and chromosome 1p monosomy in human neuroblastomas. Prog Clin Biol Res, 1988. 271: p. 3-15.
    8. Gilbert, F., et al., Abnormalities of chromosome 1p in human neuroblastoma tumors and cell lines. Cancer Genet Cytogenet, 1982. 7(1): p. 33-42.
    9. Steeg, P.S., et al., Evidence for a Novel Gene Associated With Low Tumor Metastatic Potential. Journal of the National Cancer Institute, 1988. 80(3): p. 200-204.
    10. Almgren, M.A., et al., Nucleoside diphosphate kinase A/nm23-H1 promotes metastasis of NB69-derived human neuroblastoma. Mol Cancer Res, 2004. 2(7): p. 387-94.
    11. Jin, L., et al., Nm23-H1 regulates the proliferation and differentiation of the human chronic myeloid leukemia K562 cell line: a functional proteomics study. Life Sci, 2009. 84(13-14): p. 458-67.
    12. Ma, D., et al., NM23-H1 and NM23-H2 repress transcriptional activities of nuclease-hypersensitive elements in the platelet-derived growth factor-A promoter. J Biol Chem, 2002. 277(2): p. 1560-7.
    13. Hildebrandt, M., et al., A human NDP-kinase B specifically binds single-stranded poly-pyrimidine sequences. Nucleic Acids Res, 1995. 23(19): p. 3858-64.
    14. Henriksson, M. and B. Luscher, Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res, 1996. 68: p. 109-82.
    15. Evan, G.I. and T.D. Littlewood, The role of c-myc in cell growth. Curr Opin Genet Dev, 1993. 3(1): p. 44-9.
    16. Blackwood, E.M. and R.N. Eisenman, Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science, 1991. 251(4998): p. 1211-7.
    17. Amati, B., et al., Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell, 1993. 72(2): p. 233-245.
    18. Blackwood, E.M., B. Luscher, and R.N. Eisenman, Myc and Max associate in vivo. Genes Dev, 1992. 6(1): p. 71-80.
    19. Luscher, B. and L.G. Larsson, The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene, 1999. 18(19): p. 2955-66.
    20. Prendergast, G. and E. Ziff, Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science, 1991. 251(4990): p. 186-189.
    21. Dang, C.V., et al., The c-Myc target gene network. Semin Cancer Biol, 2006. 16(4): p. 253-64.
    22. Dang, C.V., c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol, 1999. 19(1): p. 1-11.
    23. Hoffman, B. and D.A. Liebermann, The proto-oncogene c-myc and apoptosis. Oncogene, 1998. 17(25): p. 3351-7.
    24. Grandori, C., et al., The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol, 2000. 16: p. 653-99.
    25. Coller, H.A., et al., Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A, 2000. 97(7): p. 3260-5.
    26. Pietenpol, J.A., et al., Transforming growth factor beta 1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation. Proc Natl Acad Sci U S A, 1990. 87(10): p. 3758-62.
    27. Wierstra, I. and J. Alves, FOXM1c transactivates the human c-myc promoter directly via the two TATA boxes P1 and P2. Febs j, 2006. 273(20): p. 4645-67.
    28. Taub, R., et al., A novel alteration in the structure of an activated c-myc gene in a variant t(2;8) Burkitt lymphoma. Cell, 1984. 37(2): p. 511-20.
    29. Leder, P., et al., Translocations among antibody genes in human cancer. Science, 1983. 222(4625): p. 765-71.
    30. Battey, J., et al., The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell, 1983. 34(3): p. 779-87.
    31. Simonsson, T., P. Pecinka, and M. Kubista, DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res, 1998. 26(5): p. 1167-72.
    32. Gonzalez, V. and L.H. Hurley, The c-MYC NHE III(1): function and regulation. Annu Rev Pharmacol Toxicol, 2010. 50: p. 111-29.
    33. Cashman, D.J., et al., Molecular modeling and biophysical analysis of the c-MYC NHE-III1 silencer element. J Mol Model, 2008. 14(2): p. 93-101.
    34. Siddiqui-Jain, A., et al., Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A, 2002. 99(18): p. 11593-8.
    35. Rangan, A., O.Y. Fedoroff, and L.H. Hurley, Induction of duplex to G-quadruplex transition in the c-myc promoter region by a small molecule. J Biol Chem, 2001. 276(7): p. 4640-6.
    36. Postel, E.H., S.E. Mango, and S.J. Flint, A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation factor. Mol Cell Biol, 1989. 9(11): p. 5123-33.
    37. Wierstra, I. and J. Alves, The c-myc promoter: still MysterY and challenge. Adv Cancer Res, 2008. 99: p. 113-333.
    38. Berberich, S.J. and E.H. Postel, PuF/NM23-H2/NDPK-B transactivates a human c-myc promoter-CAT gene via a functional nuclease hypersensitive element. Oncogene, 1995. 10(12): p. 2343-7.
    39. Braddock, D.T., et al., Structure and dynamics of KH domains from FBP bound to single-stranded DNA. Nature, 2002. 415(6875): p. 1051-6.
    40. He, L., et al., Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. Embo j, 2000. 19(5): p. 1034-44.
    41. Avigan, M.I., B. Strober, and D. Levens, A far upstream element stimulates c-myc expression in undifferentiated leukemia cells. J Biol Chem, 1990. 265(30): p. 18538-45.
    42. Nieto, M.A., The early steps of neural crest development. Mechanisms of Development, 2001. 105(1–2): p. 27-35.
    43. Bronner-Fraser, M., Neural crest cell formation and migration in the developing embryo. Faseb j, 1994. 8(10): p. 699-706.
    44. Dupin, E. and L. Sommer, Neural crest progenitors and stem cells: From early development to adulthood. Developmental Biology, 2012. 366(1): p. 83-95.
    45. Lewis, J.L., et al., Reiterated Wnt signaling during zebrafish neural crest development. Development, 2004. 131(6): p. 1299-308.
    46. Graham, A., et al., The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature, 1994. 372(6507): p. 684-686.
    47. Ikeya, M., et al., Wnt signalling required for expansion of neural crest and CNS progenitors. Nature, 1997. 389(6654): p. 966-970.
    48. Cheung, M. and J. Briscoe, Neural crest development is regulated by the transcription factor Sox9. Development, 2003. 130(23): p. 5681-93.
    49. Hong, C.-S. and J.-P. Saint-Jeannet, Sox proteins and neural crest development. Seminars in Cell & Developmental Biology, 2005. 16(6): p. 694-703.
    50. Sauka-Spengler, T. and M. Bronner-Fraser, A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol, 2008. 9(7): p. 557-568.
    51. Southard-Smith, E.M., L. Kos, and W.J. Pavan, SOX10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet, 1998. 18(1): p. 60-64.
    52. Kelsh, R.N., Sorting out Sox10 functions in neural crest development. BioEssays, 2006. 28(8): p. 788-798.
    53. Cheung, N.-K.V. and M.A. Dyer, Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer, 2013. 13(6): p. 397-411.
    54. Pattyn, A., et al., The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature, 1999. 399(6734): p. 366-70.
    55. Grunwald, D.J. and J.S. Eisen, Headwaters of the zebrafish [mdash] emergence of a new model vertebrate. Nat Rev Genet, 2002. 3(9): p. 717-724.
    56. Kalueff, A.V., A.M. Stewart, and R. Gerlai, Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci, 2014. 35(2): p. 63-75.
    57. Kari, G., U. Rodeck, and A.P. Dicker, Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther, 2007. 82(1): p. 70-80.
    58. Yang, Y.-S., Protein Y counteracts the enhancing ability of NDPK-A in neuroblastoma cell invasiveness, in college of medicine. 2015, National Cheng Kung University: Institute of Molecular Medicine. p. 60.
    59. Chan, K.-H., NDP kinase A is involved in c-myc transcriptional regulation, in College of medicine. 2010, National Cheng Kung University: Institute of Oral Medicine. p. 67.
    60. Wierstra, I. and J. Alves, The c‐myc Promoter: Still MysterY and Challenge, in Advances in Cancer Research. 2008, Academic Press. p. 113-333.
    61. Lachman, H.M., et al., c-myc mRNA levels in the cell cycle change in mouse erythroleukemia cells following inducer treatment. Proc Natl Acad Sci U S A, 1985. 82(16): p. 5323-7.
    62. Filmus, J. and R.N. Buick, Relationship of c-myc expression to differentiation and proliferation of HL-60 cells. Cancer Res, 1985. 45(2): p. 822-5.
    63. Grosso, L.E. and H.C. Pitot, Modulation of c-myc expression in the HL-60 cell line. Biochem Biophys Res Commun, 1984. 119(2): p. 473-80.
    64. Filograna, R., et al., Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation. PLoS One, 2015. 10(8): p. e0136769.
    65. Korecka, J.A., et al., Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One, 2013. 8(5): p. e63862.
    66. Teppola, H., et al., Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol. Neurochem Res, 2016. 41(4): p. 731-47.
    67. Lin, H.-F., The phosphotransferase activity is required for NDP kinase A mediated neuroblastoma invasiveness, in college of medicine. 2014, National Cheng Kung University: Institute of Molecular Medicine.
    68. Desvignes, T., et al., The Nme gene family in fish. Fish Physiol Biochem, 2013. 39(1): p. 53-8.
    69. Desvignes, T., C. Fauvel, and J. Bobe, The NME gene family in zebrafish oogenesis and early development. Naunyn Schmiedebergs Arch Pharmacol, 2011. 384(4-5): p. 439-49.
    70. Schnitzler, C.E., et al., Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation. Evodevo, 2014. 5: p. 15.
    71. Okabe-Kado, J., T. Kasukabe, and Y. Honma, Expression of cell surface NM23 proteins of human leukemia cell lines of various cellular lineage and differentiation stages. Leukemia Research, 2002. 26(6): p. 569-576.
    72. Willems, R., et al., Extracellular nucleoside diphosphate kinase NM23/NDPK modulates normal hematopoietic differentiation. Experimental Hematology, 2002. 30(7): p. 640-648.
    73. Okabe-Kado, J., et al., Inhibitory action of nm23 proteins on induction of erythroid differentiation of human leukemia cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1995. 1267(2–3): p. 101-106.
    74. Backer, M.V., et al., Overexpression of NM23-1 enhances responsiveness of IMR-32 human neuroblastoma cells to differentiation stimuli. Anticancer Res, 2000. 20(3a): p. 1743-9.
    75. Gervasi, F., et al., nm23 influences proliferation and differentiation of PC12 cells in response to nerve growth factor. Cell Growth Differ, 1996. 7(12): p. 1689-95.
    76. Ishijima, Y., et al., Overexpression of nucleoside diphosphate kinases induces neurite outgrowth and their substitution to inactive forms leads to suppression of nerve growth factor- and dibutyryl cyclic AMP-induced effects in PC12D cells. FEBS Lett, 1999. 445(1): p. 155-9.
    77. Pitera, J.E., et al., Coordinated expression of 3' hox genes during murine embryonal gut development: an enteric Hox code. Gastroenterology, 1999. 117(6): p. 1339-51.
    78. Fu, M., et al., Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. J Cell Biol, 2004. 166(5): p. 673-84.
    79. Tumpel, S., L.M. Wiedemann, and R. Krumlauf, Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol, 2009. 88: p. 103-37.
    80. Savory, J.G.A., et al., Identification of novel retinoic acid target genes. Developmental Biology, 2014. 395(2): p. 199-208.
    81. Jones, J.I. and D.R. Clemmons, Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev, 1995. 16(1): p. 3-34.
    82. Bienvenu, G., et al., Insulin-like growth factor binding protein-6 transgenic mice: postnatal growth, brain development, and reproduction abnormalities. Endocrinology, 2004. 145(5): p. 2412-20.
    83. Zackenfels, K., R.W. Oppenheim, and H. Rohrer, Evidence for an important role of IGF-I and IGF-II for the early development of chick sympathetic neurons. Neuron, 1995. 14(4): p. 731-41.
    84. Barkho, B.Z., et al., Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev, 2006. 15(3): p. 407-21.
    85. Joshi, S., et al., Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells. Oncogene, 2005. 25(2): p. 240-247.
    86. Jonk, L.J., et al., Cloning and expression during development of three murine members of the COUP family of nuclear orphan receptors. Mech Dev, 1994. 47(1): p. 81-97.
    87. Ohbayashi, N. and M. Fukuda, Role of Rab family GTPases and their effectors in melanosomal logistics. Journal of Biochemistry, 2012. 151(4): p. 343-351.
    88. Liu, J., et al., Nerve growth factor-mediated neurite outgrowth via regulation of Rab5. Mol Biol Cell, 2007. 18(4): p. 1375-84.
    89. Shi, G.-X., W. Cai, and D.A. Andres, Rit subfamily small GTPases: Regulators in neuronal differentiation and survival. Cellular Signalling, 2013. 25(10): p. 2060-2068.
    90. Miloso, M., et al., Retinoic acid-induced neuritogenesis of human neuroblastoma SH-SY5Y cells is ERK independent and PKC dependent. J Neurosci Res, 2004. 75(2): p. 241-52.
    91. Clark, O., S. Daga, and A.W. Stoker, Tyrosine phosphatase inhibitors combined with retinoic acid can enhance differentiation of neuroblastoma cells and trigger ERK- and AKT-dependent, p53-independent senescence. Cancer Letters, 2013. 328(1): p. 44-54.
    92. Qiao, J., et al., PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochem Biophys Res Commun, 2012. 424(3): p. 421-6.
    93. Bilitou, A., et al., The NM23 family in development. Mol Cell Biochem, 2009. 329(1-2): p. 17-33.

    下載圖示 校內:2021-07-31公開
    校外:2021-07-31公開
    QR CODE