| 研究生: |
施政宏 Shih, Jeng-Hung |
|---|---|
| 論文名稱: |
Cu2CdSnSe4奈米晶的熱溶合成及其性質研究 Solvothermal synthesis and properties of Cu2CdSnSe4 nanocrystals |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 熱電材料 、Cu2CdSnSe4奈米晶 、熱溶法 、高壓釜 |
| 外文關鍵詞: | Solvothermal synthesis, Cu2CdSnSe4 nanocrystals, autoclave |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用兩種不同的熱溶法來合成Cu2CdSnSe4(CCTSe)奈米晶,並探討不同的溶劑、莫耳配比、溫度、時間對合成CCTSe的影響。同時分別對CCTSe和銅摻雜CCTSe進行光學、熱電性質研究。高壓釜中加入聯胺於乙二胺溶液在溫度190℃持溫72小時,可加速形成CCTSe與銅摻雜CCTSe奈米晶。在相同條件下於無添加聯胺之乙二胺溶液中,其生成物之粉末會有CdSe,Cu2SnSe3之不純相存在。熱溶反應下聯胺具有使硫系金屬化合物產生降維度效應(dimensional reduction ),幫助形成CCTSe跟銅摻雜CCTSe奈米晶。氮氣下用油胺作為溶液,在250℃持溫72小時,可生成CCTSe與銅參雜CCTSe奈米晶。藉由紫外/可見光光譜儀量測CCTSe與銅摻雜CCTSe的能隙約1.1eV,顯示銅摻雜對CCTSe能隙並無顯著效應。
In the present study, the synthesis of Cu2CdSnSe3 (CCTSe) nanocrystals by two solvotherml processes as a function of the solvent, the molar ratio of precursors, temperature and time were explored. Meanwhile, the optical and thermoelectric properties of CCTSe and Cu-doped CCTSe nanocrystals were also studied. On synthesis in an autoclave, the addition of hydrazine to the ethylenediamine solvent speeded up the formation of pure CCTSe and Cu-doped CCTSe nanocrystals at 190˚C for 72 h. Without addition of hydrazine, some impurity phases such as CdSe and Cu2SnSe3 still remained in the synthesized powders after growth at 190˚C for 72 h. The dimensional reduction of metal chalcogenides in the solvothermal reaction by hydrazine enhanced the growth of the CCTSe and Cu-doped CCTSe nanocrystals. On synthesis in the oleylamine solvent in N2 at 250˚C for 72 h, pure CCTSe and Cu-doped CCTSe nanocrystals could be acquired. The bandgaps of CCTSe and Cu-doped CCTSe nanocrystals were determined to be about 1.1 eV by UV-vis spectroscopy, revealing that the Cu doping had no significant effect on the bandgap of the CCTSe crystals.
[1] G. Mahan, B. Sales, J. Sharp, "Thermoelectric materials: New approaches to an old problem", Physics Today, 500, 42 (1997).
[2] S. Riffat, X. Ma, "Thermoelectrics: a review of present and potential applications", Applied Thermal Engineering, 230, 913-935 (2003).
[3] X. Shi, F. Huang, M. Liu, L. Chen, "Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds CuZnSnInSe", Applied physics letters, 940, 122103 (2009).
[4] M.-L. Liu, I. W. Chen, F.-Q. Huang, L.-D. Chen, "Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4", Advanced Materials, 210, 3808-3812 (2009).
[5] M. Ibáñez, D. Cadavid, R. Zamani, N. García-Castelló, V. Izquierdo-Roca, W. Li, A. Fairbrother, J. D. Prades, A. Shavel, J. Arbiol, "Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: The Case of Stannite Cu2CdSnSe4", Chemistry of Materials, (2012).
[6] T. J. Seebeck, "Magnetic polarization of metals and minerals", Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 2650, (1823).
[7] T. J. Seebeck, "Methode, Platinatiegel auf ihr chemische reinheit durck thermomagnetismus zu prufen", Schweigger's J. Phy., 460, 101 (1826).
[8] D. M. Rowe: CRC handbook of thermoelectrics, CRC Press, Boca Raton, USA, 1995.
[9] R. D. M., "CRC Handbook of Thermoelectrics", CRC Press, Boca Raton, USA (1995).
[10] J. Peltier, "Nouvelles experiences sur la caloricite des courans electrique", Annales de Chimie et de Physique, 560, 371 (1834).
[11] Holten, "Lactic Acid: Properties and Chemistry of Lactic Acid and Derivatives.", Verlag Chemie., 221 (1971).
[12] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes", Polymer, 430, 4403-4412 (2002).
[13] W. Thomson, "An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments on steam", Transactions of the Edinburgh Royal Society, 160, 541-574 (1849).
[14] W. Thomson, "On a Mechanical Theory of Thermo-Electric Currents", Proceeding Of The Royal Society Of Edinburgh, 910, (1851).
[15] W. Thomson, "Account of researches in thermo-electricity", Proceedings of the Royal Society of London, 70, 49-58 (1854).
[16] W. Thomson, "On the electro-dynamic qualities of metals:effects of magnetization on the electric conductivity of nickel and of iron", Proceedings of the Royal Society of London, 80, 546-550 (1856).
[17] W. Thomson, "The Bakerian Lecture.On the Electro-dynamic Qualities of Metals", Philosophical Transactions of the Royal Society of London, 1460, 649-751 (1856).
[18] G. S. Nolas, J. W. Sharp, H. J., "Goldsmid,Thermoelectrics: Basic Principles and New Materials Developments", Springer-Verlag, Heidelberg (2001).
[19] D. M. Rowe: Thermoelectrics handbook: Macro to nano, CRC press, New York, 2006.
[20] D. M. Rowe, "Thermoelectrics Handbook: Micro to Nano", CRC Press, New York (2006).
[21] R. R. Heikes, R. W. Ure: Thermoelectricity: science and engineering, Interscience Publishers New York, 1961.
[22] C. W. Nan, R. Birringer, "Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model", Physical Review B, 570, 8264 (1998).
[23] J. Martin, L. Wang, L. Chen, G. Nolas, "Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites", Physical Review B, 790, 115311 (2009).
[24] J. P. Heremans, C. M. Thrush, D. T. Morelli, "Thermopower enhancement in lead telluride nanostructures", Physical Review B, 700, 115334 (2004).
[25] K. Kishimoto, M. Tsukamoto, T. Koyanagi, "Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering", Journal of applied physics, 920, 5331 (2002).
[26] G. S. Nolas, J. Sharp, H. J. Goldsmid: Thermoelectrics: basic principles and new materials developments, Springer Verlag, 41, 2001.
[27] 王亞帆, "能障散射效應對 Bi0. 5Sb1. 5Te3 薄膜熱電性質影響之研究", (2007).
[28] K. Kishimoto, T. Koyanagi, "Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties", Journal of applied physics, 920, 2544 (2002).
[29] W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu, X. Tang, "Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler", Journal of the American Chemical Society, 1310, 3713-3720 (2009).
[30] L. Xi, J. Yang, W. Zhang, L. Chen, "Anomalous Dual-Element Filling in Partially Filled Skutterudites", Journal of the American Chemical Society, 1310, 5560-5563 (2009).
[31] D. Mandrus, A. Migliori, T. Darling, M. Hundley, E. Peterson, J. Thompson, "Electronic transport in lightly doped CoSb", Physical Review B, 520, 4926 (1995).
[32] Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, "Thermoelectric properties of CoSb, Journal of Alloys and Compounds, 3150, 193-197 (2001).
[33] S. Bai, Y. Pei, L. Chen, W. Zhang, X. Zhao, J. Yang, "Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12", Acta Materialia, 570, 3135-3139 (2009).
[34] X. Shi, J. Yang, S. Bai, H. Wang, M. Chi, J. R. Salvador, W. Zhang, L. Chen, W. WongNg, "On the Design of HighEfficiency Thermoelectric Clathrates through a Systematic CrossSubstitution of Framework Elements", Advanced Functional Materials, 200, 755-763 (2010).
[35] M. L. Liu, Y. M. Wang, F. Q. Huang, L. D. Chen, W. D. Wang, "Optical and electrical properties study on p-type conducting CuAlS2+ x with wide band gap", Scripta Materialia, 570, 1133-1136 (2007).
[36] M. L. Liu, F. Q. Huang, L. D. Chen, Y. M. Wang, Y. H. Wang, G. F. Li, Q. Zhang, "p-type transparent conductor: Zn-doped CuAlS2", Applied physics letters, 900, 072109-072109-072103 (2007).
[37] M. L. Liu, F. Q. Huang, L. D. Chen, "p-Type electrical conduction and wide optical band gap in Mg-doped CuAlS2", Scripta Materialia, 580, 1002-1005 (2008).
[38] M. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. Cronin, T. Koga, "Low-dimensional thermoelectric materials", Physics of the Solid State, 410, 679-682 (1999).
[39] H. Goldsmid, J. Sharp, "Estimation of the thermal band gap of a semiconductor from Seebeck measurements", Journal of electronic materials, 280, 869-872 (1999).
[40] I. Olekseyuk, L. Gulay, I. Dydchak, L. Piskach, O. Parasyuk, O. Marchuk, "Single crystal preparation and crystal structure of the Cu 2Zn/Cd, Hg/SnSe4 compounds", Journal of Alloys and Compounds, 3400, 141-145 (2002).
[41] B. E. Leake, "Nomenclature of amphiboles", The Canadian Mineralogist, 160, 501-520 (1978).
[42] L. Huang, X. Li, Q. Zhang, W. Miao, L. Zhang, X. Yan, Z. Zhang, Z. Hua, "Properties of transparent conductive InO: Mo thin films deposited by Channel Spark Ablation", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 230, 1350 (2005).
[43] A. Voskamyan, "Electrical properties of copper selenide", Fizika i Tekhnika Poluprovodnikov, 120, 2096-2099 (1978).
[44] F.J. Fan, B. Yu, Y.X. Wang, Y.L. Zhu, X.J. Liu, S.H. Yu, Z. Ren, "Colloidal Synthesis of Cu2CdSnSe4 Nanocrystals and HotPressing to Enhance the Thermoelectric FigureofMerit", Journal of the American Chemical Society, 1330, 15910-15913 (2011).
[45] 汪建民等人, "材料分析", 中國材料科學學會, (1998).
[46] R. L. Weiher, R. P. Ley, "Optical Properties of Indium Oxide", Journal of Applied Physics, 370, 299-302 (1966).
[47] 王孟亮, "拉曼光譜學及其在生化上的應用", (1983).
[48] C. Raman, "A change of wave-length in light scattering", Nature, 1210, 619-619 (1928).
[49] C. S. Lopes, C. E. Foerster, F. C. Serbena, P. R. Júnior, A. R. Jurelo, J. L. P. Júnior, P. Pureur, A. L. Chinelatto, "Raman spectroscopy of highly oriented FeSe0. 5Te0. 5 superconductor", Superconductor Science and Technology, 250, 025014 (2012).
[50] B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, C. Chunnilall, "Raman spectra of thin solid films of some metal sulfides", Journal of molecular structure, 4100, 267-270 (1997).
[51] P. Uday Bhaskar, G. Suresh Babu, Y. Kishore Kumar, V. Sundara Raja, "Investigations on co-evaporated Cu2SnSe3 and Cu2SnSe3―ZnSe thin films", Applied surface science, 2570, 8529-8534 (2011).
[52] Y.-F. Du, J.-Q. Fan, W.-H. Zhou, Z.-J. Zhou, J. Jiao, S.-X. Wu, "One-Step Synthesis of Stoichiometric Cu2ZnSnSe4 as Counter Electrode for Dye-Sensitized Solar Cells", ACS Applied Materials & Interfaces, 40, 1796-1802 (2012).
[53] D. B. Mitzi, "Solution processing of chalcogenide semiconductors via dimensional reduction", Advanced Materials, 210, 3141-3158 (2009).
[54] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, A. G. Schrott, "A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device", Advanced Materials, 200, 3657-3662 (2008).
[55] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, A. G. Schrott, "Hydrazine-based deposition route for device-quality CIGS films", Thin Solid Films, 5170, 2158-2162 (2009).
[56] T. K. Todorov, K. B. Reuter, D. B. Mitzi, "High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber", Advanced Materials, 220, E156-E159 (2010).
[57] H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, "Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4 (II= Zn, Cd; III= Ga, In; IV= Ge, Sn; VI= Se)", Journal of crystal growth, 2080, 416-422 (2000).
[58] R. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 320, 751-767 (1976).
[59] S. A. Mkrtchyan, K. Dovletov, É. G. Zhukov, A. G. Melikdzhanyan, S. Nuryev, "Electrophysical properties of Cu2AIIBIVSe4 (AII - Cd, Hg; BIV - Ge, Sn) compounds", Inorganic Materials, 240, 932-934 (1989).
[60] A. Myers Kelley, "Resonance Raman and Resonance Hyper-Raman Intensities: Structure and Dynamics of Molecular Excited States in Solution†", The Journal of Physical Chemistry A, 1120, 11975-11991 (2008).
[61] E. G. Tulsky, J. R. Long, "Dimensional Reduction: A Practical Formalism for Manipulating Solid Structures", Chemistry of Materials, 130, 1149-1166 (2001).