簡易檢索 / 詳目顯示

研究生: 施政宏
Shih, Jeng-Hung
論文名稱: Cu2CdSnSe4奈米晶的熱溶合成及其性質研究
Solvothermal synthesis and properties of Cu2CdSnSe4 nanocrystals
指導教授: 林文台
Lin, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 114
中文關鍵詞: 熱電材料Cu2CdSnSe4奈米晶熱溶法高壓釜
外文關鍵詞: Solvothermal synthesis, Cu2CdSnSe4 nanocrystals, autoclave
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用兩種不同的熱溶法來合成Cu2CdSnSe4(CCTSe)奈米晶,並探討不同的溶劑、莫耳配比、溫度、時間對合成CCTSe的影響。同時分別對CCTSe和銅摻雜CCTSe進行光學、熱電性質研究。高壓釜中加入聯胺於乙二胺溶液在溫度190℃持溫72小時,可加速形成CCTSe與銅摻雜CCTSe奈米晶。在相同條件下於無添加聯胺之乙二胺溶液中,其生成物之粉末會有CdSe,Cu2SnSe3之不純相存在。熱溶反應下聯胺具有使硫系金屬化合物產生降維度效應(dimensional reduction ),幫助形成CCTSe跟銅摻雜CCTSe奈米晶。氮氣下用油胺作為溶液,在250℃持溫72小時,可生成CCTSe與銅參雜CCTSe奈米晶。藉由紫外/可見光光譜儀量測CCTSe與銅摻雜CCTSe的能隙約1.1eV,顯示銅摻雜對CCTSe能隙並無顯著效應。

    In the present study, the synthesis of Cu2CdSnSe3 (CCTSe) nanocrystals by two solvotherml processes as a function of the solvent, the molar ratio of precursors, temperature and time were explored. Meanwhile, the optical and thermoelectric properties of CCTSe and Cu-doped CCTSe nanocrystals were also studied. On synthesis in an autoclave, the addition of hydrazine to the ethylenediamine solvent speeded up the formation of pure CCTSe and Cu-doped CCTSe nanocrystals at 190˚C for 72 h. Without addition of hydrazine, some impurity phases such as CdSe and Cu2SnSe3 still remained in the synthesized powders after growth at 190˚C for 72 h. The dimensional reduction of metal chalcogenides in the solvothermal reaction by hydrazine enhanced the growth of the CCTSe and Cu-doped CCTSe nanocrystals. On synthesis in the oleylamine solvent in N2 at 250˚C for 72 h, pure CCTSe and Cu-doped CCTSe nanocrystals could be acquired. The bandgaps of CCTSe and Cu-doped CCTSe nanocrystals were determined to be about 1.1 eV by UV-vis spectroscopy, revealing that the Cu doping had no significant effect on the bandgap of the CCTSe crystals.

    目錄 中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 引言 1 第二章 熱電原理及熱電材料發展 3 2.1熱電效應原理及材料 3 2.1.1理論發展 3 2.1.2 熱電優值[8,18,19] 5 2.1.3奈米材料於熱電之應用 6 2.1.4奈米塊材對熱傳導係數之影響 7 2.1.5奈米塊材對Seebeck 係數之影響 7 2.2Cu2CdSnSe4的熱電理論 10 2.3Cu2CdSnSe4化合物製備 13 2.3.1固態燒結法[4] 13 2.3.2熱溶法(Solvothermal)[5,44] 14 2.4研究動機 15 第三章 實驗步驟與方法 16 3.1熱溶法在高壓釜中合成Cu2CdSnSe4 (CCTSe)奈米晶粉末 16 3.2熱溶法在氮氣中合成Cu2CdSnSe4奈米晶粉末 17 3.3材料特性分析 18 3.3.1 掃描式電子顯微鏡[45] 18 3.3.2 X光繞射儀[45] 19 3.3.3 X光能量散佈分析儀[45] 20 3.3.4 穿透式電子顯微鏡[45] 21 3.3.5 紫外/可見光光譜儀[46] 22 3.3.6 拉曼光譜儀[47,48] 23 3.3.7 熱電性值分析 25 第四章 結果與討論 28 4.1熱溶法在高壓釜(autoclave)中合成CCTSe奈米晶 28 4.1.1聯胺對熱溶法在高壓中合成CCTSe奈米晶的影響 28 4.1.2熱溶法在高壓釜中合成CCTSe奈米晶之微結構及化學組成 30 4.1.3 銅摻雜對熱溶法在高壓釜中合成CCTSe的影響 31 4.1.4銅摻雜對高壓釜中合成CCTSe之紫外/可見光光譜 32 4.1.5銅摻雜CCTSe奈米晶真空燒結之相變化 33 4.1.6熱溶法在高壓釜之CCTSe奈米塊材熱電分析 34 4.2熱溶法在氮氣中合成CCTSe奈米晶 34 4.2.1 熱溶法之氮氣中製備Cu2CdSnSe4奈米晶 34 4.2.2 氮氣下熱溶法合成CCTSe奈米晶之微結構及化學組成 36 4.2.3在氮氣下熱溶法做銅摻雜Cu2CdSnSe4 37 4.2.4銅摻雜對氮氣中合成CCTSe之紫外/可見光光譜 38 4.2.5銅摻雜CCTSe奈米晶真空燒結之相變化 38 第五章結論 39 參考文獻 40 附錄 108 JCPDS 01-070-8931 (Cu2CdSnSe4) 108 JCPDS 01-086-1239 (CuSe) 109 JCPDS 00-019-0191(CdSe) 110 JCPDS 01-072-8034 (Cu2SnSe3-1) 111 JCPDS 01-072-8034 (Cu2SnSe3-2) 112 JCPDS 00-048-1224 (SnSe) 113 JCPDS 01-072-7165 (Cu2Se) 114   表目錄 表1熱電材料之能隙比較 45 表2熱溶法在高壓釜合成CCTSe之SEE-EDS能譜 45 表3熱溶法在高壓釜合成CCTSe之TEM-EDS(A) 46 表4熱溶法在高壓釜合成CCTSe之TEM-EDS (B) 46 表5銅摻雜Cu2.1Cd0.95SnSe4之EDS成分分析 46 表6銅摻雜Cu2.1Cd0.8Sn0.8Se4之EDS成分分析 47 表7銅摻雜CCTSe奈米晶真空燒結、燒結溫度300℃ 8小時之片狀EDS 47 表8銅摻雜CCTSe奈米晶真空燒結、燒結溫度300℃ 8小時之小顆粒EDS 48 表9銅摻雜CCTSe燒結溫度530℃ 10小時之大顆粒EDS 48 表10銅摻雜CCTSe燒結溫度530℃ 10小時之小顆粒EDS 48 表11 CCTSe退火試片530℃、10小時磨去表面之EDS 49 表12熱溶法氮氣中合成CCTSe之SEM-EDS能譜 49 表13熱溶法氮氣中合成CCTSe之TEM-EDS(A) 49 表14熱溶法氮氣中合成CCTSe之TEM-EDS(B) 50 表15 Cu2.1Cd0.9Sn1Se4成分分析 50   圖目錄 圖1 Seebeck效應示意圖 51 圖2 Peltier效應示意圖 51 圖3材料種類對優值之綜合影響 52 圖4載子通過晶界能障前後變化之示意圖 52 圖5熱端、冷端載子移動示意圖 53 圖6晶界散射前後Seebeck 係數、電導率和功率因子改變的比值 53 圖7黃銅礦(chalcopyrite)結構 54 圖8 CuAlS2有序四面體陣列 54 圖9閃鋅礦超晶格結構 55 圖10四面體[Cu2Q4]和四面體[SnMQ4] 版狀結構 55 圖11高壓下熱溶法實驗步驟 56 圖12氮氣下熱溶法實驗步驟 57 圖13高壓釜不鏽鋼外殼之照片 58 圖14高壓釜鐵氟龍內襯之照片 58 圖15高壓釜鎖緊後之照片 59 圖16架設迴流系統後之照片 59 圖17 Bragg's law 之繞射示意圖 60 圖18不同光子散射過程躍遷能階圖[60] 60 圖19 Seebeck量測示意圖 61 圖20四點探針量測示意圖 61 圖21熱傳導量試片裝置意圖 61 圖22熱溶法高壓釜未加聯胺-反應時間72小時 溫度190℃ XRD圖 62 圖23熱溶法高壓釜未加聯胺-反應時間72小時 溫度190℃ RA圖 62 圖24熱溶法高壓釜加聯胺-反應時間72小時 溫度180℃ XRD圖 63 圖25熱溶法高壓釜加聯胺-反應時間72小時 溫度180℃ RA圖 63 圖26熱溶法高壓釜加聯胺-反應時間40小時 溫度190℃ XRD圖 64 圖27熱溶法高壓釜加聯胺-反應時間40小時 溫度190℃ RA圖 64 圖28熱溶法高壓釜加聯胺-反應時間72小時 溫度190℃ XRD圖 65 圖29熱溶法高壓釜加聯胺-反應時間72小時 溫度190℃ RA圖 65 圖30聯胺降維度示意圖[61] 66 圖31熱溶法在高壓釜合成CCTSe之FE-SEM 67 圖32熱溶法在高壓釜合成CCTSe之TEM形貌分析 68 圖33熱溶法在高壓釜合成CCTSe之TEM影像圖 69 圖34熱溶法在高壓釜合成CCTSe之HADDF元素分布結果 70 圖35熱溶法在高壓釜合成Cu2Cd1Sn1Se4奈米晶繞射圖位置 71 圖36熱溶法在高壓釜合成Cu2Cd1Sn1Se4奈米晶繞射圖 71 圖37 Cu2Cd1Sn1Se4奈米晶繞射圖位置 72 圖38 Cu2Cd1Sn1Se4奈米晶繞射圖 72 圖39 Cu2Cd1Sn1Se4、Cu2.1Cd0.95Sn1Se4及Cu2.1Cd0.8Sn0.8Se4以矽基板校正之XRD 73 圖40各角度區間校正XRD圖 74 圖41高壓釜合成之銅摻雜CCTSe光學性質 75 圖42銅摻雜CCTSe奈米晶真空燒結、燒結溫度300℃ 8小時之SEM 76 圖43銅摻雜CCTSe奈米晶真空燒結、燒結溫度300℃ 8小時之XRD 77 圖44銅摻雜CCTSe奈米晶真空燒結、燒結溫度350℃ 8小時之SEM 78 圖45銅摻雜CCTSe奈米晶真空燒結、燒結溫度350℃ 8小時之XRD 79 圖46銅摻雜CCTSe奈米晶真空燒結、燒結溫度380℃ 8小時之XRD 79 圖47銅摻雜CCTSe奈米晶真空燒結、燒結溫度380℃ 8小時之SEM 80 圖48銅摻雜CCTSe奈米晶真空燒結、燒結溫度430℃ 8小時之XRD 81 圖49銅摻雜CCTSe奈米晶真空燒結、燒結溫度430℃ 8小時之SEM 82 圖50銅摻雜CCTSe奈米晶真空燒結、燒結溫度460℃ 16小時之SEM 83 圖51銅摻雜CCTSe奈米晶真空燒結、燒結溫度460℃ 16小時之XRD 84 圖52 銅摻雜CCTSe奈米晶真空燒結、燒結溫度500℃ 15小時之SEM 85 圖53銅摻雜CCTSe奈米晶真空燒結、燒結溫度500℃ 15小時之XRD 86 圖54銅摻雜CCTSe奈米晶真空燒結、燒結溫度530℃ 10小時之SEM 87 圖55銅摻雜CCTSe奈米晶真空燒結、燒結溫度530℃ 10小時之XRD 88 圖56 CCTSe退火試片530℃、10小時磨去表面Cu2Se等雜相之XRD 88 圖57 CCTSe之電導率 89 圖58 CCTSe之Seeback係數 89 圖59熱溶法氮氣中合成CCTSe-反應溫度200℃、時間72小時 XRD圖 90 圖60熱溶法氮氣中合成CCTSe-反應溫度200℃、時間72小時 RA圖 90 圖61熱溶法氮氣中合成CCTSe-反應溫度220℃、時間72小時 XRD圖 91 圖62熱溶法氮氣中合成CCTSe-反應溫度220℃、時間72小時 RA圖 91 圖63熱溶法氮氣中合成CCTSe-反應溫度250℃、時間15小時 XRD圖 92 圖64熱溶法氮氣中合成CCTSe-反應溫度250℃、時間15小時 RA圖 92 圖65熱溶法氮氣中合成CCTSe-反應溫度250℃、時間24小時 XRD圖 93 圖66熱溶法氮氣中合成CCTSe-反應溫度250℃、時間24小時 RA圖 93 圖67熱溶法氮氣中合成CCTSe-反應溫度250℃、時間72小時 XRD圖 94 圖68熱溶法氮氣中合成CCTSe-反應溫度250℃、時間72小時 RA圖 94 圖69熱溶法氮氣中合成CCTSe之FE-SEM 95 圖70熱溶法氮氣中合成CCTSe之TEM形貌分析 96 圖71熱溶法氮氣中合成CCTSe之TEM-EDS分析 97 圖72熱溶法氮氣中合成CCTSe之HADDF元素分布結果 98 圖73 熱溶法氮氣中合成Cu2CdSnSe4奈米晶繞射圖位置 99 圖74熱溶法氮氣中合成Cu2CdSnSe4奈米晶繞射分析 99 圖75 熱溶法氮氣中合成Cu2CdSnSe4奈米晶繞射圖位置 100 圖76熱溶法氮氣中合成Cu2CdSnSe4奈米晶繞射圖位置 100 圖77氮氣下熱溶法-反應溫度250℃反應時間72小時: 101 圖78氮氣下熱溶法矽基板校正XRD圖 101 圖79各角度區間校正XRD圖 102 圖80 CCTSe與銅摻雜CCTSe之光學性質 103 圖81銅摻雜CCTSe奈米晶真空燒結、燒結溫度470℃ 24小時之SEM 104 圖82銅摻雜CCTSe奈米晶真空燒結、燒結溫度470℃ 24小時之XRD 105 圖83銅摻雜CCTSe奈米晶真空燒結、燒結溫度500℃ 5小時之SEM 106 圖84銅摻雜CCTSe奈米晶真空燒結、燒結溫度500℃ 5小時之XRD 107

    [1] G. Mahan, B. Sales, J. Sharp, "Thermoelectric materials: New approaches to an old problem", Physics Today, 500, 42 (1997).
    [2] S. Riffat, X. Ma, "Thermoelectrics: a review of present and potential applications", Applied Thermal Engineering, 230, 913-935 (2003).
    [3] X. Shi, F. Huang, M. Liu, L. Chen, "Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds CuZnSnInSe", Applied physics letters, 940, 122103 (2009).
    [4] M.-L. Liu, I. W. Chen, F.-Q. Huang, L.-D. Chen, "Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4", Advanced Materials, 210, 3808-3812 (2009).
    [5] M. Ibáñez, D. Cadavid, R. Zamani, N. García-Castelló, V. Izquierdo-Roca, W. Li, A. Fairbrother, J. D. Prades, A. Shavel, J. Arbiol, "Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: The Case of Stannite Cu2CdSnSe4", Chemistry of Materials, (2012).
    [6] T. J. Seebeck, "Magnetic polarization of metals and minerals", Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 2650, (1823).
    [7] T. J. Seebeck, "Methode, Platinatiegel auf ihr chemische reinheit durck thermomagnetismus zu prufen", Schweigger's J. Phy., 460, 101 (1826).
    [8] D. M. Rowe: CRC handbook of thermoelectrics, CRC Press, Boca Raton, USA, 1995.
    [9] R. D. M., "CRC Handbook of Thermoelectrics", CRC Press, Boca Raton, USA (1995).
    [10] J. Peltier, "Nouvelles experiences sur la caloricite des courans electrique", Annales de Chimie et de Physique, 560, 371 (1834).
    [11] Holten, "Lactic Acid: Properties and Chemistry of Lactic Acid and Derivatives.", Verlag Chemie., 221 (1971).
    [12] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes", Polymer, 430, 4403-4412 (2002).
    [13] W. Thomson, "An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments on steam", Transactions of the Edinburgh Royal Society, 160, 541-574 (1849).
    [14] W. Thomson, "On a Mechanical Theory of Thermo-Electric Currents", Proceeding Of The Royal Society Of Edinburgh, 910, (1851).
    [15] W. Thomson, "Account of researches in thermo-electricity", Proceedings of the Royal Society of London, 70, 49-58 (1854).
    [16] W. Thomson, "On the electro-dynamic qualities of metals:effects of magnetization on the electric conductivity of nickel and of iron", Proceedings of the Royal Society of London, 80, 546-550 (1856).
    [17] W. Thomson, "The Bakerian Lecture.On the Electro-dynamic Qualities of Metals", Philosophical Transactions of the Royal Society of London, 1460, 649-751 (1856).
    [18] G. S. Nolas, J. W. Sharp, H. J., "Goldsmid,Thermoelectrics: Basic Principles and New Materials Developments", Springer-Verlag, Heidelberg (2001).
    [19] D. M. Rowe: Thermoelectrics handbook: Macro to nano, CRC press, New York, 2006.
    [20] D. M. Rowe, "Thermoelectrics Handbook: Micro to Nano", CRC Press, New York (2006).
    [21] R. R. Heikes, R. W. Ure: Thermoelectricity: science and engineering, Interscience Publishers New York, 1961.
    [22] C. W. Nan, R. Birringer, "Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model", Physical Review B, 570, 8264 (1998).
    [23] J. Martin, L. Wang, L. Chen, G. Nolas, "Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites", Physical Review B, 790, 115311 (2009).
    [24] J. P. Heremans, C. M. Thrush, D. T. Morelli, "Thermopower enhancement in lead telluride nanostructures", Physical Review B, 700, 115334 (2004).
    [25] K. Kishimoto, M. Tsukamoto, T. Koyanagi, "Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering", Journal of applied physics, 920, 5331 (2002).
    [26] G. S. Nolas, J. Sharp, H. J. Goldsmid: Thermoelectrics: basic principles and new materials developments, Springer Verlag, 41, 2001.
    [27] 王亞帆, "能障散射效應對 Bi0. 5Sb1. 5Te3 薄膜熱電性質影響之研究", (2007).
    [28] K. Kishimoto, T. Koyanagi, "Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties", Journal of applied physics, 920, 2544 (2002).
    [29] W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu, X. Tang, "Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler", Journal of the American Chemical Society, 1310, 3713-3720 (2009).
    [30] L. Xi, J. Yang, W. Zhang, L. Chen, "Anomalous Dual-Element Filling in Partially Filled Skutterudites", Journal of the American Chemical Society, 1310, 5560-5563 (2009).
    [31] D. Mandrus, A. Migliori, T. Darling, M. Hundley, E. Peterson, J. Thompson, "Electronic transport in lightly doped CoSb", Physical Review B, 520, 4926 (1995).
    [32] Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, "Thermoelectric properties of CoSb, Journal of Alloys and Compounds, 3150, 193-197 (2001).
    [33] S. Bai, Y. Pei, L. Chen, W. Zhang, X. Zhao, J. Yang, "Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12", Acta Materialia, 570, 3135-3139 (2009).
    [34] X. Shi, J. Yang, S. Bai, H. Wang, M. Chi, J. R. Salvador, W. Zhang, L. Chen, W. WongNg, "On the Design of HighEfficiency Thermoelectric Clathrates through a Systematic CrossSubstitution of Framework Elements", Advanced Functional Materials, 200, 755-763 (2010).
    [35] M. L. Liu, Y. M. Wang, F. Q. Huang, L. D. Chen, W. D. Wang, "Optical and electrical properties study on p-type conducting CuAlS2+ x with wide band gap", Scripta Materialia, 570, 1133-1136 (2007).
    [36] M. L. Liu, F. Q. Huang, L. D. Chen, Y. M. Wang, Y. H. Wang, G. F. Li, Q. Zhang, "p-type transparent conductor: Zn-doped CuAlS2", Applied physics letters, 900, 072109-072109-072103 (2007).
    [37] M. L. Liu, F. Q. Huang, L. D. Chen, "p-Type electrical conduction and wide optical band gap in Mg-doped CuAlS2", Scripta Materialia, 580, 1002-1005 (2008).
    [38] M. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. Cronin, T. Koga, "Low-dimensional thermoelectric materials", Physics of the Solid State, 410, 679-682 (1999).
    [39] H. Goldsmid, J. Sharp, "Estimation of the thermal band gap of a semiconductor from Seebeck measurements", Journal of electronic materials, 280, 869-872 (1999).
    [40] I. Olekseyuk, L. Gulay, I. Dydchak, L. Piskach, O. Parasyuk, O. Marchuk, "Single crystal preparation and crystal structure of the Cu 2Zn/Cd, Hg/SnSe4 compounds", Journal of Alloys and Compounds, 3400, 141-145 (2002).
    [41] B. E. Leake, "Nomenclature of amphiboles", The Canadian Mineralogist, 160, 501-520 (1978).
    [42] L. Huang, X. Li, Q. Zhang, W. Miao, L. Zhang, X. Yan, Z. Zhang, Z. Hua, "Properties of transparent conductive InO: Mo thin films deposited by Channel Spark Ablation", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 230, 1350 (2005).
    [43] A. Voskamyan, "Electrical properties of copper selenide", Fizika i Tekhnika Poluprovodnikov, 120, 2096-2099 (1978).
    [44] F.J. Fan, B. Yu, Y.X. Wang, Y.L. Zhu, X.J. Liu, S.H. Yu, Z. Ren, "Colloidal Synthesis of Cu2CdSnSe4 Nanocrystals and HotPressing to Enhance the Thermoelectric FigureofMerit", Journal of the American Chemical Society, 1330, 15910-15913 (2011).
    [45] 汪建民等人, "材料分析", 中國材料科學學會, (1998).
    [46] R. L. Weiher, R. P. Ley, "Optical Properties of Indium Oxide", Journal of Applied Physics, 370, 299-302 (1966).
    [47] 王孟亮, "拉曼光譜學及其在生化上的應用", (1983).
    [48] C. Raman, "A change of wave-length in light scattering", Nature, 1210, 619-619 (1928).
    [49] C. S. Lopes, C. E. Foerster, F. C. Serbena, P. R. Júnior, A. R. Jurelo, J. L. P. Júnior, P. Pureur, A. L. Chinelatto, "Raman spectroscopy of highly oriented FeSe0. 5Te0. 5 superconductor", Superconductor Science and Technology, 250, 025014 (2012).
    [50] B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, C. Chunnilall, "Raman spectra of thin solid films of some metal sulfides", Journal of molecular structure, 4100, 267-270 (1997).
    [51] P. Uday Bhaskar, G. Suresh Babu, Y. Kishore Kumar, V. Sundara Raja, "Investigations on co-evaporated Cu2SnSe3 and Cu2SnSe3―ZnSe thin films", Applied surface science, 2570, 8529-8534 (2011).
    [52] Y.-F. Du, J.-Q. Fan, W.-H. Zhou, Z.-J. Zhou, J. Jiao, S.-X. Wu, "One-Step Synthesis of Stoichiometric Cu2ZnSnSe4 as Counter Electrode for Dye-Sensitized Solar Cells", ACS Applied Materials & Interfaces, 40, 1796-1802 (2012).
    [53] D. B. Mitzi, "Solution processing of chalcogenide semiconductors via dimensional reduction", Advanced Materials, 210, 3141-3158 (2009).
    [54] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, A. G. Schrott, "A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device", Advanced Materials, 200, 3657-3662 (2008).
    [55] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, A. G. Schrott, "Hydrazine-based deposition route for device-quality CIGS films", Thin Solid Films, 5170, 2158-2162 (2009).
    [56] T. K. Todorov, K. B. Reuter, D. B. Mitzi, "High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber", Advanced Materials, 220, E156-E159 (2010).
    [57] H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, "Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4 (II= Zn, Cd; III= Ga, In; IV= Ge, Sn; VI= Se)", Journal of crystal growth, 2080, 416-422 (2000).
    [58] R. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 320, 751-767 (1976).
    [59] S. A. Mkrtchyan, K. Dovletov, É. G. Zhukov, A. G. Melikdzhanyan, S. Nuryev, "Electrophysical properties of Cu2AIIBIVSe4 (AII - Cd, Hg; BIV - Ge, Sn) compounds", Inorganic Materials, 240, 932-934 (1989).
    [60] A. Myers Kelley, "Resonance Raman and Resonance Hyper-Raman Intensities: Structure and Dynamics of Molecular Excited States in Solution†", The Journal of Physical Chemistry A, 1120, 11975-11991 (2008).
    [61] E. G. Tulsky, J. R. Long, "Dimensional Reduction:  A Practical Formalism for Manipulating Solid Structures", Chemistry of Materials, 130, 1149-1166 (2001).

    下載圖示 校內:2016-08-01公開
    校外:2016-08-01公開
    QR CODE