簡易檢索 / 詳目顯示

研究生: 白力尹
Bai, Li-Yin
論文名稱: 基於安全的混合縱向和橫向聯邦學習框架適用於二元分類應用
A Secure Vertical and Horizontal Federated Learning Framework for Binary Classification Application
指導教授: 蔡佩璇
Tsai, Pei-Hsuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 20
中文關鍵詞: 縱向聯邦學習橫向聯邦學習同態加密縱向和橫向聯邦學習
外文關鍵詞: Vertical Federated Learning, Horizontal Federated Learning, Homomorphic Encryption, Vertical-Horizontal Federated Learning
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了確保不同機構之間能夠保護資料安全並且進行模型訓練,本篇論文中結合了縱向聯邦學習以及橫向聯邦學習,並且使用同態加密對特徵資料和權重加密的方式,設計一個安全的混合縱向聯邦學習和橫向聯邦學習的框架,適用於二元分類應用。用以實現相同領域擁有相同特徵資料的各個機構與不同領域擁有相同客戶樣本的機構,能夠以資料不公開的方式安全的進行聯邦學習的訓練。

    To ensure data security and model training among different institutions, this paper combines vertical federated learning and horizontal federated learning. It utilizes homomorphic encryption to encrypt feature data and model weights, designing a secure framework for hybrid vertical and horizontal federated learning. This framework is suitable for binary classification applications. It enables various institutions within the same field, possessing the same feature data, and institutions from different field with identical client samples, to securely conduct federated learning training without exposing their data.

    摘要 I 英文延伸摘要 II 誌謝 VIII 目錄 IX 圖目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 研究問題 2 1.4 研究方法 3 1.5 研究目標 4 1.6 貢獻 4 第二章 文獻探討 6 2.1 聯邦學習 6 2.2 縱向聯邦學習 6 2.3 橫向聯邦學習 6 2.4 混合縱向和橫向聯邦學習 7 2.5 同態加密 7 第三章 系統概覽 8 3.1 系統架構 8 3.2 相關假設 9 第四章 安全的混合縱向和橫向聯邦學習方法 11 4.1 兩對金鑰邏輯迴歸縱向聯邦學習 11 4.1.1 方法描述 11 4.1.2 安全性分析與證明 13 4.2 權重加密橫向聯邦學習 15 4.2.1 方法描述 15 4.2.2 安全性分析與證明 16 4.3 基於安全的混合縱向和橫向聯邦學習 17 第五章 結論與未來方向 19 5.1 結論 19 5.2 未來方向 19 參考文獻 20

    [1] WAN, Shuo, et al. How Global Observation embedding in Vertical-Horizontal Federated Learning. In: 2022 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2022. p. 12-17.
    [2] HARDY, Stephen, et al. Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption. arXiv preprint arXiv:1711.10677, 2017.
    [3] MCMAHAN, Brendan, et al. Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics. PMLR, 2017. p. 1273-1282.
    [4] YANG, Qiang, et al. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10.2: 1-19.
    [5] YANG, Shengwen, et al. Parallel distributed logistic regression for vertical federated learning without third-party coordinator. arXiv preprint arXiv:1911.09824, 2019.
    [6] GUO, Li; WEI, Qin; CHENYU, He. Research on flight delay prediction based on horizontal and vertical federated learning framework. In: 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT). IEEE, 2021. p. 38-44.
    [7] PAILLIER, Pascal. Public-key cryptosystems based on composite degree residuosity classes. In: International conference on the theory and applications of cryptographic techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. p. 223-238.

    無法下載圖示 校內:2028-08-24公開
    校外:2028-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE