簡易檢索 / 詳目顯示

研究生: 王誌晟
Wang, Zhi-Cheng
論文名稱: 水波獵能器力學性質對其轉換效率影響之數值研究
Effects of the mechanical properties of water-wave energy harvester on its energy conversion efficiency: A numerical study
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 159
中文關鍵詞: 波浪能波浪獵能器數值計算附加質量轉換效率分析
外文關鍵詞: Wave energy, Water-wave energy harvesters, Numerical computations, added mass, performance analysis
相關次數: 點閱:80下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面對全球的自然資源消耗,以及減少碳排放量的環境保護趨勢,海洋能源為未來永續的重要發展目標之一,而水波獵能器在滿足日益增長的全球能源需求方面具有巨大潛力。本實驗室先前曾針對水波獵能器之數學分析、數值計算以及實際建置水波獵能器系統進行實驗研究,此實驗成功設計出以振盪浮體型系統為概念的水波獵能器,而最終實驗結果裝置轉換效率具有許多的改善空間,因此本研究主要的目標是利用數值模擬計算水波獵能器力學性質-附加質量並且改變機構參數和幾何參數進而提升水波獵能器轉換效率。
    此研究中我們建置兩個模型: (a)模型一為數值水槽模型,我們在線性系統條件下驗證線性波理論和造波器理論並得到良好的驗證結果,且我們透過台灣中部沿海之海況與拖曳水槽中的波浪參數條件做無因次分析得到波浪入射波的參數範圍,再來利用改變無因次參數 得到不同福祿數 入射波的振幅; (b)模型二為水波獵能器模型,我們建立計算水波獵能器附加質量的方法,我們定義修正係數 來修正非線性效應的影響,得知隨著浮體振幅越小受到非線性效應的影響較少所以修正係數 會趨近於一,並且計算出附加質量和入射波頻率與浮體振幅之間的關係式,了解到浮體振幅越大附加質量越小和入射波頻率越大附加質量越小的現象,再來我們利用計算出的附加質量討論最佳阻尼係數,發現當波浪扮演給予能量角色的時候波浪阻尼係數會小於零,最後我們討論不同水波獵能器機構參數(c、kext )和機構尺寸(直徑D 、水面下深度Dw )對轉換效率的影響,以及我們比較實驗結果和本研究模擬結果,可以發現在相同WEC振幅的情況下,利用數值模擬得到的轉換效率為實驗結果的33.7倍數;調整機構參數、幾何參數得到轉換效率為實驗結果的420倍,了解到有效提升水波獵能器轉換效率的方式就是提升浮體直徑,可以加裝彈簧於系統同時改變浮體水面下深度讓系統滿足共振條件可以有效提升轉換效率。

    To fulfill the global environmental protection requirements of carbon emission reduction, the use of renewable energy has to be increased. And water wave energy certainly is one important form of renewable energy worth further development. In our previous work, a prototype of water wave energy harvester was designed and constructed for experimental testing in the towing tank at NCKU. But the conversion efficiency still have much room for improvement. So, in the current stage we focus our work upon calculating the hydrodynamic characteristics of the wave energy converter (WEC) by numerical computations. And the goal is to understand how the mechatronics and geometrical parameters affect the power output of the WEC, so that its performance efficiency can be maximized by tuning such parameters. Specifically, two computational models are constructed in the present work. The first is the “numerical wave tank” (NWT) model. The purpose is to calculate the excited wave characteristics (such as frequency and amplitude) and to verify them by comparison with existing theoretical formulas. And in the second model a WEC is added in the NWT, so that the rigid-body motion and hydrodynamic characteristics of the WEC can be computed. It is found that m_a depends on the frequency of the wave and the amplitude of WEC. Meanwhile, as k increases, r decreases and asymptotes to unity. Then we compare the results of the experiment and the simulation results. We find that the conversion efficiency of the simulation results.is 420 times larger than the experimental results when the mechatronics and geometric parameters are “optimally” tuned. And the way to enhance the conversion efficiency of the WEC is to increase the diameter and decrease the submerged depth of the WEC when the system is out of resonance, or to increase the submerged depth to make the system resonate with the incoming wave.

    摘要 I Extended Abstract II 致謝 XIX 目錄 XX 表目錄 XXIV 圖目錄 XXV 符號說明 XXXI 縮寫對照表 XXXIV 1 緒論 1 1.1 研究動機和目標 1 1.2 研究背景 2 1.3 文獻回顧 9 1.3.1 數值計算 10 1.3.2 實驗室先前研究 14 1.4 全文架構 22 2 數學模型 24 2.1 統御方程式和邊界條件 25 2.1.1 統御方程式 26 2.1.2 邊界條件 26 2.1.3 無因次化方程式 35 2.2 參數設定 43 2.2.1 波浪條件參數 43 2.2.2 水波獵能器浮體端參數 48 2.3 效率定義 53 2.4 計算模型介紹 54 2.4.1 模型建立和設定 54 2.4.2 計算流程圖 57 3 簡化線性模型討論 58 3.1 主動式獵能板模型驗證 59 3.1.1 水箱系統自然頻率 62 3.1.2 Mode Shapes 64 3.2 被動式獵能板模型驗證 65 3.2.1 對稱壓力分佈 66 3.2.2 反對稱壓力分佈 68 4 數值水槽模型結果討論 71 4.1 收斂性分析 72 4.1.1 網格大小獨立性 72 4.1.2 時間步階獨立性 74 4.2 數值水槽模型驗證 75 4.2.1 線性波理論驗證 75 4.2.2 造波器理論驗證 77 4.3 參數 與Fr和波浪振幅之關係 80 4.4 本章小節 84 5 水波獵能器模型結果討論 85 5.1 系統長度對水波獵能器動態響應影響 86 5.1.1 分析流程 87 5.1.2 討論和分析 90 5.2 附加質量探討 94 5.2.1 分析流程 95 5.2.2 附加質量討論和分析 104 5.3 最佳阻尼係數和轉換效率探討 109 5.3.1 質量-阻尼-彈簧系統 110 5.3.1 最佳阻尼係數討論和分析 112 5.3.2 直徑與D水面下深度Dw討論和分析 118 5.4 實驗與數值模擬結果討論 146 5.4.1 同振幅結果討論 146 5.4.2 無水槽實驗討論 149 5.5 本章小節 151 6 結論與未來工作 152 6.1 結論 152 6.2 本文貢獻 154 6.3 未來工作與展望 155 參考文獻 156

    [1] C.-Y. Liu, "Prototype System Development and Experimental Testing of Water-Wave Energy Harvester," Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2019.
    [2] Y.-C. Wang, "Design, Realization and Testing of a Water-Wave Energy
    Harvester," Master thesis, Mechanical Engineering, National Cheng Kung University, 2021.
    [3] D. Khojasteh, S. M. Mousavi, W. Glamore, and G. Iglesias, "Wave energy status in Asia," Ocean Engineering, vol. 169, pp. 344-358, 2018.
    [4] J. C. Pierce and B. S. Steel, "Oregon Coast Wave Energy," in Prospects for Alternative Energy Development in the US West: Springer, 2017, pp. 117-130.
    [5] F. d. O. Antonio, "Wave energy utilization: A review of the technologies," Renewable and sustainable energy reviews, vol. 14, no. 3, pp. 899-918, 2010.
    [6] ABB台灣首頁. 台灣能源轉型 [Online] Available: https://new.abb.com/tw/about/publication/abb-connects-2017-02/foward-looking-infra-plan
    [7] A. Parker, "Deep ocean currents energy resources–A case study of Australia," World J. Model. Simul, vol. 11, no. 3, pp. 163-173, 2015.
    [8] O. e. systems. Ocean energy [Online] Available: https://www.ocean-energy-systems.org/ocean-energy/ocean-energy-in-the-world/
    [9] A. F. Falcão and J. C. Henriques, "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, vol. 85, pp. 1391-1424, 2016.
    [10] D. Mawooa, L. Latchoomun, R. Kaully, and K. Busawon, "An Overview of Wave Energy Technologies in the Mauritian Context," in 2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), 2018: IEEE, pp. 1-6.
    [11] Z. Chen, H. Yu, M. Hu, G. Meng, and C. Wen, "A review of offshore wave energy extraction system," Advances in Mechanical Engineering, vol. 5, p. 623020, 2013.
    [12] "Ocean Power Technologies PowerBuoy," 2018.
    [13] G. J. Dalton, R. Alcorn, and T. Lewis, "Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America," Renewable Energy, vol. 35, no. 2, pp. 443-455, 2010.
    [14] B. Drew, A. R. Plummer, and M. N. Sahinkaya, "A review of wave energy converter technology," ed: Sage Publications Sage UK: London, England, 2009.
    [15] B. Czech and P. Bauer, "Wave energy converter concepts: Design challenges and classification," IEEE Industrial Electronics Magazine, vol. 6, no. 2, pp. 4-16, 2012.
    [16] Y. Zhang, Y. Zhao, W. Sun, and J. Li, "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, vol. 141, p. 110764, 2021.
    [17] B. Bouali and S. Larbi, "Contribution to the geometry optimization of an oscillating water column wave energy converter," Energy procedia, vol. 36, pp. 565-573, 2013.
    [18] A. Kamath, H. Bihs, and Ø. A. Arntsen, "Numerical modeling of power take-off damping in an oscillating water column device," International Journal of Marine Energy, vol. 10, pp. 1-16, 2015.
    [19] D.-Z. Ning, R.-Q. Wang, Q.-P. Zou, and B. Teng, "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied energy, vol. 168, pp. 636-648, 2016.
    [20] F. Mahnamfar and A. Altunkaynak, "Comparison of numerical and experimental analyses for optimizing the geometry of OWC systems," Ocean Engineering, vol. 130, pp. 10-24, 2017.
    [21] P. Contestabile, G. Crispino, E. Di Lauro, V. Ferrante, C. Gisonni, and D. Vicinanza, "Overtopping breakwater for wave Energy Conversion: Review of state of art, recent advancements and what lies ahead," Renewable Energy, vol. 147, pp. 705-718, 2020.
    [22] J. P. Kofoed, P. Frigaard, E. Friis-Madsen, and H. C. Sørensen, "Prototype testing of the wave energy converter wave dragon," Renewable energy, vol. 31, no. 2, pp. 181-189, 2006.
    [23] D. Vicinanza, L. Margheritini, J. P. Kofoed, and M. Buccino, "The SSG wave energy converter: Performance, status and recent developments," Energies, vol. 5, no. 2, pp. 193-226, 2012.
    [24] W. Koo and M.-H. Kim, "Freely floating-body simulation by a 2D fully nonlinear numerical wave tank," Ocean Engineering, vol. 31, no. 16, pp. 2011-2046, 2004.
    [25] H. Sun and O. M. Faltinsen, "Water impact of horizontal circular cylinders and cylindrical shells," Applied Ocean Research, vol. 28, no. 5, pp. 299-311, 2006.
    [26] X.-f. Liang, J.-m. Yang, J. Li, L.-f. Xiao, and X. Li, "Numerical simulation of irregular wave-simulating irregular wave train," Journal of Hydrodynamics, vol. 22, no. 4, pp. 537-545, 2010.
    [27] A. Lal and M. Elangovan, "CFD simulation and validation of flap type wave-maker," World Academy of Science, Engineering and Technology, vol. 46, no. 1, pp. 76-82, 2008.
    [28] W. Finnegan and J. Goggins, "Numerical simulation of linear water waves and wave–structure interaction," Ocean Engineering, vol. 43, pp. 23-31, 2012.
    [29] A. I. Korotkin, Added masses of ship structures. Springer Science & Business Media, 2008.
    [30] A. Hulme, "The wave forces acting on a floating hemisphere undergoing forced periodic oscillations," Journal of Fluid Mechanics, vol. 121, pp. 443-463, 1982.
    [31] D. Bull, M. E. Ochs, D. L. Laird, B. Boren, and R. A. Jepsen, "Technological cost-reduction pathways for point absorber wave energy converters in the marine hydrokinetic environment," SAND2013-7204, 2013.
    [32] L. Birk and G. Clauss, "Parametric hull design and automated optimization of offshore structures," in 10th Int. Congress of the Int. Maritime Association of the Mediterranean, Hellas, Greece, 2002.
    [33] L. Birk and G. Clauss, "Automated hull optimisation of offshore structures based on rational seakeeping criteria," in The Eleventh International Offshore and Polar Engineering Conference, 2001: OnePetro.
    [34] R. W. Yeung and Y. Jiang, "Effects of shaping on viscous damping and motion of heaving cylinders," in International Conference on Offshore Mechanics and Arctic Engineering, 2011, vol. 44359, pp. 825-836.
    [35] M. Vantorre, R. Banasiak, and R. Verhoeven, "Modelling of hydraulic performance and wave energy extraction by a point absorber in heave," Applied ocean research, vol. 26, no. 1-2, pp. 61-72, 2004.
    [36] M. Shadman, S. F. Estefen, C. A. Rodriguez, and I. C. Nogueira, "A geometrical optimization method applied to a heaving point absorber wave energy converter," Renewable energy, vol. 115, pp. 533-546, 2018.
    [37] M. N. Berenjkoob, M. Ghiasi, and C. G. Soares, "Influence of the shape of a buoy on the efficiency of its dual-motion wave energy conversion," Energy, vol. 214, p. 118998, 2021.
    [38] D. Khojasteh and R. Kamali, "Evaluation of wave energy absorption by heaving point absorbers at various hot spots in Iran seas," Energy, vol. 109, pp. 629-640, 2016.
    [39] M. Eriksson, J. Isberg, and M. Leijon, "Hydrodynamic modelling of a direct drive wave energy converter," International Journal of Engineering Science, vol. 43, no. 17-18, pp. 1377-1387, 2005.
    [40] J. Goggins and W. Finnegan, "Shape optimisation of floating wave energy converters for a specified wave energy spectrum," Renewable Energy, vol. 71, pp. 208-220, 2014.
    [41] M. Giassi, M. Göteman, S. Thomas, J. Engström, M. Eriksson, and J. Isberg, "Multi-parameter optimization of hybrid arrays of point absorber wave energy converters," in 12th European Wave and Tidal Energy Conference (EWTEC), Cork, Ireland, August 27-31, 2017., 2017.
    [42] A. Garcia-Teruel and D. Forehand, "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, vol. 139, p. 110593, 2021.
    [43] P.-H. Chen and T.-S. Yang, "Performance analysis of a water tank with oscillating walls for wave energy harvesting," Journal of Engineering Mathematics, vol. 111, no. 1, pp. 165-189, 2018.
    [44] K. W. Keat, "Numerical Analysis of the Wave-Energy Harvesting Performance of a Water Tank with an Oscillating Paddle," Master thesis, Mechanical Engineering, National Cheng Kung University, 2020.
    [45] K. Sugiura, R. Sawada, Y. Nemoto, R. Haraguchi, and T. Asai, "Wave flume testing of an oscillating-body wave energy converter with a tuned inerter," Applied Ocean Research, vol. 98, p. 102127, 2020.
    [46] P. Sun et al., "Design and optimization investigation on hydraulic transmission and energy storage system for a floating-array-buoys wave energy converter," Energy Conversion and Management, vol. 235, p. 113998, 2021.
    [47] S. F. Baudic, A. N. Williams, and A. Kareem, "A two-dimensional numerical wave flume—Part 1: nonlinear wave generation, propagation, and absorption," J. Offshore Mech. Arct. Eng., vol. 123, no. 2, pp. 70-75, 2001.
    [48] J. Billingham and A. C. King, Wave motion (no. 24). Cambridge university press, 2000.
    [49] W. Sheng and A. Lewis, "Assessment of wave energy extraction from seas: numerical validation," Journal of energy resources technology, vol. 134, no. 4, 2012.
    [50] S. Jin and R. Patton, "Geometry influence on hydrodynamic response of a heaving point absorber wave energy converter," in European Wave and Tidal Energy Conference, 2017.
    [51] C. Windt, J. Davidson, and J. V. Ringwood, "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, vol. 93, pp. 610-630, 2018.
    [52] J. Siya, J. Patton, and Bingyong Guo, "Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning," Renewable and Sustainable Energy Reviews, vol. 169, pp. 819-832, 2019.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE