簡易檢索 / 詳目顯示

研究生: 趙浩宇
Chao, Hao-Yu
論文名稱: 鍺表面氮基鈍化處理與超低等效氧化層厚度鍺金氧半結構
Surface Passivation by Nitrogen-based Treatments for Ultra-low EOT Ge MOS
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 30
中文關鍵詞: 氨電漿聯氨高介電常數氧化層鈍化
外文關鍵詞: germanium, ammonia plasma, hydrazine, high-k, passivation
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當半導體製程技術持續發展,人們為了實現摩爾定律的預測而逐漸遇到困難,許多因應後摩爾時代的技術被研究、開發,擁有高載子遷移率的鍺就是其中一個替代矽的候選。然而鍺與閘極氧化層之間不佳的介面品質是一個需要突破的困難。
    本論文研究以氮基鈍化處理的方式,來改善鍺與高介電常數氧化層之間的介面問題。我分別以氨電漿和聯氨來進行沉積氧化層的鈍化,並且比較這兩種製程的效果,做出超低等效氧化層厚度的金氧半結構。

    When the semiconductor fabrication technology is developing, People feel difficulty following the Moore’s Law. Thus, several solutions to the post-Moore era are studied, and germanium is one of the candidates to take place of silicon. However, the poor quality of germanium and its gate oxide is a bottleneck to be overcome.
    In this thesis, I used the surface passivation by nitrogen-based treatments to improve the surface quality between germanium and high-k materials. This research compared the effects of passivation treatments by ammonia plasma and hydrazine respectively, making a ultra-low EOT germanium MOS structure.

    中文摘要 IV Abstract V 致謝 VI Contents VII Table Captions IX Figure Captions X 1 Introduction 1 1.1 General Background 1 1.1.1 Scaling of Semiconductor Devices and Post-Moore Era 1 1.1.2 The Progress of Device Architectures 2 1.1.3 High-κ Dielectrics 5 1.1.4 Germanium as a High-mobility Material 6 1.2 Motivation 7 2 Surface Nitrogen-Passivation Treatment Using NH3 Plasma for Ge MOSCAP 9 2.1 Experimental Process Flow 9 2.2 Methods for Parameter Extraction 10 2.3 Results and Discussion 11 3 Aluminum Nitride as an Interfacial Layer 15 3.1 Experimental Process Flow 15 3.2 Results and Discussion 15 4 Conclusion and Future Work 29 4.1 Conclusion 29 4.2 Future Work 29 Reference 30

    1. Schwierz, F. and J.J. Liou. Status and Future Prospects of CMOS Scaling and Moore's Law-A Personal Perspective. in 2020 IEEE Latin America Electron Devices Conference (LAEDC). 2020. IEEE.
    2. Roy, K., S. Mukhopadhyay, and H. Mahmoodi-Meimand, Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proceedings of the IEEE, 2003. 91(2): p. 305-327.
    3. Fahad, H.M. and M.M. Hussain, Are nanotube architectures more advantageous than nanowire architectures for field effect transistors? Scientific reports, 2012. 2(1): p. 1-7.
    4. Nawaz, M., On the Evaluation of Gate Dielectrics for 4H-SiC Based Power MOSFETs. Active and Passive Electronic Components, 2015. 2015: p. 1-12.
    5. Toriumi, A., et al., Opportunities and challenges for Ge CMOS–Control of interfacing field on Ge is a key. Microelectronic Engineering, 2009. 86(7-9): p. 1571-1576.
    6. Wang, S.K., et al., Desorption kinetics of GeO from GeO 2/Ge structure. Journal of applied physics, 2010. 108(5): p. 054104.
    7. Signamarcheix, T., et al., Germanium oxynitride (Ge O x N y) as a back interface passivation layer for Germanium-on-insulator substrates. Applied Physics Letters, 2008. 93(2): p. 022109.
    8. Kutsuki, K., et al., Thermal robustness and improved electrical properties of ultrathin germanium oxynitride gate dielectric. Japanese Journal of Applied Physics, 2011. 50(1R): p. 010106.
    9. Watanabe, H., et al. High-quality GeON gate dielectrics formed by plasma nitridation of ultrathin thermal oxides on Ge (100). in 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology. 2010. IEEE.
    10. JER-HUEIH CHEN, J., et al., Ultrathin Al2O3 and HfO2 gate dielectrics on surface-nitrided Ge. IEEE transactions on electron devices, 2004. 51(9): p. 1441-1447.
    11. Seo, H., et al., Extrinsic interface formation of Hf O 2 and Al 2 O 3∕ Ge O x gate stacks on Ge (100) substrates. Journal of Applied Physics, 2009. 106(4): p. 044909.
    12. Wang, C.-I., et al., Suppression of GeO x interfacial layer and enhancement of the electrical performance of the high-K gate stack by the atomic-layer-deposited AlN buffer layer on Ge metal-oxide-semiconductor devices. RSC advances, 2019. 9(2): p. 592-598.
    13. Winter, R., et al., New method for determining flat-band voltage in high mobility semiconductors. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2013. 31(3): p. 030604.
    14. Seiler, D.G., et al., Characterization and Metrology for ULSI Technology: 1998 International Conference. Proceedings. 1998, American Institutes of Physics, New York, NY (United States).

    無法下載圖示 校內:2026-08-27公開
    校外:2026-08-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE