簡易檢索 / 詳目顯示

研究生: 洪閔威
Hung, Min-Wei
論文名稱: 非正交多址復用及聯合傳輸之超密度網路之性能分析
Performance of Non-Orthogonal Multiple Access Based on Ultra-Dense Networks with Joint Transmissions
指導教授: 陳曉華
Chen, Hsiao-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 152
中文關鍵詞: 非正交多址超密集網路聯合傳輸
外文關鍵詞: Non-Orthogonal Multiple Access (NOMA), Ultra Dense Network (UDN), Joint transmission (JT)
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著通訊系統的發展,對於系統的速率要求也與日俱增。近年來,在下行鏈路的部分,聯合傳輸技術被用來增強通道容量。因此,我們審視了有關聯合傳輸的文獻,並從中了解到聯合傳輸的優勢。另外,隨著通訊電路的演進,非正交多址技術(NOMA)成為了下一代可行的多址方案。在本論文中,我們將三種非正交多址技術與聯合傳輸技術進行配合。透過非正交多址技術可以使頻率資源進行複用。而聯合傳輸則提供了用戶訊號的分集增益。因此,我們將著重在頻譜利用效率上的分析,並從中探討不同的非正交多址技術在聯合傳輸的場景下的性能表現。

    With the development of communications systems, we will also increase the rate for system requirements. In recent years, joint transmission technique is used to enhance channel capacity in downlink scenario. Therefore, we survey literature about joint transmission, and understanding of the benefits from joint transmission. Moreover, with the evolution of communication circuits, non-orthogonal multiple access (NOMA) technology has become a next generation multiple access scheme. In this thesis, we will cooperate three kinds of NOMA technology and joint transmission. The frequency resources can be multiplexed by NOMA technology, and joint transmission support the diversity gain. Therefore, we will focus on
    the analysis of spectrum efficiency, and explore different NOMA in joint transmission. In the uplink section, we use NOMA technology in small cell.

    摘要vii Abstract ix Acknowledgements xi Table of Contents xiii List of Figures xvii List of Tables xxvii List of Abbreviations xxix List of Symbols xxxi Dedication xxxiii 1 Introduction 1 1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 A Brief Survey on Related Works . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Overview of Non-orthogonal Multiple Access Techniques and Joint Transmission 13 2.1 Introduce of NOMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Overload Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 MUST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 PDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 MUSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 SCMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.7 Joint Transmission in UDN . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Assumptions and Definitions of Non-orthogonal Multiple Access Techniques on UDN 33 3.1 Assumptions and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.2 System Model of Downlink NOMA-based UDN . . . . . . . . . . . 35 3.1.3 System Model of Uplink NOMA-based UDN . . . . . . . . . . . . . 37 3.1.4 Small Base Station and User Equipment . . . . . . . . . . . . . . . . 39 3.1.5 Pilot Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.6 Signal Detection Method Based on SIC for Downlink . . . . . . . . . 40 3.2 Performance Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 Overloading Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Channel Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 Performance Analysis of Non-orthogonal Multiple Access Techniques on UDN with Downlink Joint Transmission 43 4.1 Performance Analysis of MUST on Downlink UDN with JT . . . . . . . . . 44 4.1.1 System Model and Scenario . . . . . . . . . . . . . . . . . . . . . . 44 4.1.2 Performance of MUST in UDN with JT . . . . . . . . . . . . . . . . 47 4.2 Performance Analysis of PDMA on Downlink UDN with JT . . . . . . . . . 50 4.2.1 System Model and Scenario . . . . . . . . . . . . . . . . . . . . . . 50 4.2.2 Performance of PDMA in UDN with JT . . . . . . . . . . . . . . . . 53 4.3 Performance Analysis of SCMA on Downlink UDN with JT . . . . . . . . . 56 4.3.1 SCMA Resource Mapping . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2 SCMA Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.3 The LLR Analysis of SCMA . . . . . . . . . . . . . . . . . . . . . . 61 4.3.4 The LLR Analysis of SCMA with MPA . . . . . . . . . . . . . . . . 62 4.3.5 The SINR Analysis of SCMA in UDN with JT . . . . . . . . . . . . 64 4.4 Compare with different NOMA on Downlink UDN with JT . . . . . . . . . . 67 4.4.1 Major Parameters of Simulations in eMBB . . . . . . . . . . . . . . 67 4.4.2 Compare with different NOMA in downlink UDN . . . . . . . . . . 68 4.5 Space Time Block Code Scheme for Asynchronous Joint Transmission Systems 73 4.5.1 Space Time Block Code Scheme for Asynchronous Joint Transmission Systems with Zero Forcing . . . . . . . . . . . . . . . . . . . . 73 4.5.2 Space Time Block Code Scheme for Asynchronous Joint Transmission Systems with MMSE . . . . . . . . . . . . . . . . . . . . . . . 83 4.6 Compare with different NOMA on Downlink UDN with Asynchronous JT . . 89 4.6.1 Major Parameters of Simulations in eMBB . . . . . . . . . . . . . . 89 4.6.2 Compare with DifferentNOMAon Downlink UDN with Asynchronous JT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5 Performance Analysis of Non-orthogonal Multiple Access Techniques on Uplink UDN 105 5.1 System Model of Uplink NOMA-based UDN . . . . . . . . . . . . . . . . . 106 5.2 Performance Analysis of MUST on Uplink UDN . . . . . . . . . . . . . . . 107 5.2.1 Performance of MUST in Uplink UDN . . . . . . . . . . . . . . . . 109 5.3 Performance Analysis of PDMA on Uplink UDN . . . . . . . . . . . . . . . 112 5.3.1 System Model and Scenario . . . . . . . . . . . . . . . . . . . . . . 112 5.3.2 Performance of PDMA in Uplink UDN . . . . . . . . . . . . . . . . 115 5.4 Performance Analysis of SCMA on Uplink UDN . . . . . . . . . . . . . . . 117 5.4.1 SCMA decoding in uplink UDN . . . . . . . . . . . . . . . . . . . . 117 5.4.2 The SINR Analysis of SCMA in uplink UDN . . . . . . . . . . . . . 119 5.5 Compare with different NOMA on uplink UDN . . . . . . . . . . . . . . . . 122 5.5.1 Major Parameters of Simulations in eMBB . . . . . . . . . . . . . . 122 5.5.2 Compare with different NOMA in uplink UDN . . . . . . . . . . . . 123 6 Conclusions and Future Works 127 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 A Physical Layer Overview 129 B SINR Derivation 131 C SCMA decoding derivation 137 D MMSE Derivation 141 References 143

    [1] Jinho Choi, “Non-Orthogonal Multiple Access in Downlink Coordinated Two-Point Systems,” IEEE Communications Letters, pp. 313-316, Feb. 2014.
    [2] Anthony Beylerian and Tomoaki Ohtsuki, “Coordinated Non-Orthogonal Multiple Access (CO-NOMA),” 2016 IEEE Global Communications Conference (GLOBECOM), Dec. 2016.
    [3] Yue Tian, Shani Lu, Andy Nix, and Mark Beach, “A Novel Opportunistic NOMA in Downlink Coordinated Multi Point Networks,” 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Sept. 2015.
    [4] Md Shipon Ali, Ekram Hossain, Arafat Al-Dweik, and Dong In Kim “Downlink Power Allocation for CoMP-NOMA in Multi-Cell Networks,” IEEE Transactions on Communications, pp. 3982-3999, April 2018.
    [5] Md Shipon Ali, Ekram Hossain, and Dong In Kim “Coordinated Multipoint Transmission in Downlink Multi-Cell NOMA Systems: Models and Spectral Efficiency Performance,” IEEE Wireless Communications, pp. 24-31, April 2018.
    [6] Chun-Hung Liu, and Di-Chun Liang “Heterogeneous Networks With Power-Domain NOMA: Coverage, Throughput, and Power Allocation Analysis,” IEEE Transactions on Wireless Communications, pp. 3524-3539, March 2018.
    [7] Yue Tian, Andrew R. Nix, and Mark Beach “On the Performance of Opportunistic NOMA in Downlink CoMP Networks,” IEEE Communications Letters, pp. 998-1001, May 2016.
    [8] Zhengxuan Liu, Guixia Kang, Lei Lei, Ningbo Zhang, and Shuang Zhang “Power Allocation for Energy Efficiency Maximization in Downlink CoMP Systems with NOMA,” 2017 IEEE Wireless Communications and Networking Conference (WCNC), March 2017.
    [9] Linglong Dai, Bichai Wang, Zhiguo Ding, Zhaocheng Wang, Sheng Chen, and Lajos Hanzo ”A Survey of Non-Orthogonal Multiple Access for 5G,” IEEE Communications
    Surveys and Tutorials, pp. 2294-2323.
    [10] Zhiguo Ding, Xianfu Lei, George K. Karagiannidis, Robert Schober, Jinhong Yuan, and Vijay K. Bhargava ”A Survey on Non-Orthogonal Multiple Access for 5G Networks
    Research Challenges and Future Trends,” IEEE Journal on Selected Areas in Communications, pp. 2181-2195.
    [11] ”3GPP release 13 3rd Generation Partnership Project, Technical Specification Group Radio Access Network;, and Study on Downlink Multiuser Superposition Transmission (MUST) for LTE.”
    [12] ”3GPP TSG RAN WG1 Meeting 56, Discussions on CoMP SU-MIMO.”
    [13] ”3GPP release 10 Proposal for Candidate Radio Interface Technologies for IMT Advanced Based on LTE Release 10 and Beyond”.
    [14] ”3GPP release 8 Long Term Evolution: System Overview, Product Development, and Test Challenges”.
    [15] ”3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA), Physical layer procedures (Release 15),” TS36.213 V15.1.0, Mar. 2018.
    [16] S. Coleri, M. Ergen, A. Puri, and A. Bahai ”Channel estimation techniques based on pilot arrangement in OFDM systems,” IEEE Transactions on Broadcasting, 07 November
    2002.
    [17] Zhiguo Ding, Yuanwei Liu, Jinho Choi, Qi Sun, Maged Elkashlan, Chih-Lin I, and H.
    Vincent Poor ”Application of Non-Orthogonal Multiple Access in LTE and 5G Networks,”
    IEEE Communications Magazine, pp. 185-191.
    [18] Abdelsalam Sayed-Ahmed, and Maha Elsabrouty ”Capacity-based user selection algorithm
    for downlink beamforming Non-Orthogonal Multiple Access system,” 2017 24th
    International Conference on Telecommunications (ICT), pp. 74-81.
    [19] Linglong Dai, Bichai Wang, Yifei Yuan, Shuangfeng Han, Chih-lin I, and Zhaocheng Wang ”Non-orthogonal multiple access for 5G solutions, challenges, opportunities, and future research trends,” IEEE Communications Magazine.
    [20] Jinjin Men, and Jianhua Ge ”Non-Orthogonal Multiple Access for Multiple-Antenna Relaying Networks,” IEEE Communications Letters, pp. 1686-1689.
    [21] Beomju Kimy, Sungmook Lim, Hyungjong Kim, Sangwook Suh, Jonghyung Kwun, Sooyong Choi, Chungyong Lee, Sanghoon Lee, and Daesik Hongyy ”Non-orthogonal
    Multiple Access in a Downlink Multiuser Beamforming System,” MILCOM 2013 - 2013 IEEE Military Communications Conference.
    [22] Yuanwei Liu, Zhijin Qin, Maged Elkashlan, Arumugam Nallanathan, and Julie A. McCann ”Non-Orthogonal Multiple Access in Large-Scale Heterogeneous Networks,” IEEE Journal on Selected Areas in Communications, pp. 2667-2680.
    [23] Shipon Ali, Ekram Hossain, and Dong In Kim ”Non-Orthogonal Multiple Access (NOMA) for Downlink Multiuser MIMO Systems User Clustering, Beamforming, and Power Allocation,” IEEE Access, pp. 565-577.
    [24] Pan Wu, Jie Zeng, Xin Su, Hui Gao, and Tiejun Lv ”On energy efficiency optimization in downlink MIMO-NOMA,” 2017 IEEE International Conference on Communications
    Workshops (ICC Workshops).
    [25] XuesiWang, JintaoWang, Longzhuang He, Zihan Tang, and Jian Song ”On the Achievable
    Spectral Efficiency of Spatial Modulation Aided Downlink Non-Orthogonal Multiple
    Access,” IEEE Communications Letters, pp. 1937-1940.
    [26] Yiming Liu, Xi Li, Hong Ji, and Heli Zhang ”A multi-user access scheme for throughput enhancement in UDN with NOMA,” 2017 IEEE International Conference on Communications
    Workshops (ICC Workshops), 21-25 May 2017,
    [27] S. M. Riazul Islam, Nurilla Avazov, Octavia A. Dobre, and Kyung-sup Kwak ”Power- Domain Non-Orthogonal Multiple Access in 5G Systems Potentials and Challenges,” IEEE Communications Surveys and Tutorials, pp. 721-742, October 2016.
    [28] T. M. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 2–14,
    Jan. 1972.
    [29] Heunchul Lee, Sungsoo Kim, and Jong-Han Lim ”Multiuser Superposition Transmission (MUST) for LTE-A systems,” 2016 IEEE International Conference on Communications
    (ICC), 22-27 May 2016.
    [30] Chia-Yang Chiang, Umesh Phuyal, and Vijay K. Bhargava ”Power Allocation in Two- Dimensional Superposition Modulation Based Cooperative Wireless Communication System,” IEEE Transactions on Communications, 18 October 2012.
    [31] Dong Fang, Yu-Chih Huang, Giovanni Geraci, Zhiguo Ding, and Holger Claussen ”Enhanced Multiuser Superposition Transmission Through Structured Modulation,” IEEE Transactions on Wireless Communications, 04 April 2019.
    [32] S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, and K. Niu, “Pattern division multiple access novel non-orthogonal multiple access for 5G radio networks,” IEEE Transactions on Vehicular Technology, DOI: 10.1109/TVT.2016.2596438, Jul. 2016.
    [33] J. Zeng, B. Li, X. Su, L. Rong, and R. Xing, “Pattern division multiple access (PDMA)
    for cellular future radio access,” International Conference onWireless Communications
    and Signal Processing , DOI: 10.1109/WCSP.2015.7341229,Dec. 2015.
    [34] W. Tang, S. Kang, B. Ren, X. Yue, and X. Zhang, “Uplink pattern division multiple
    access in 5G systems ,” Institution of Engineering and Technology, DOI 10.1049/ietcom.
    2017.1143, May 2018.
    [35] Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, and J. Xu, “Multi-user shared access for Internet of things,” IEEE Vehicular Technology Conference (VTC Spring), DOI: 10.1109/VTCSpring.2016.7504361, Jul. 2016.
    [36] H. Nikopour and H. Baligh, “Sparse code multiple access,” IEEE 24th Annual International
    Symposium on Personal, Indoor, and Mobile Radio Communications, DOI:
    10.1109/PIMRC.2013.6666156, Nov. 2013.
    [37] Y. Wu, C. Wang, Y. chen, and A. Bayesteh, “Sparse code multiple access for 5G radio transmission,” IEEE 86th Vehicular Technology Conference, DOI: 10.1109/VTCFall. 2017.8288106, Feb. 2018.
    [38] M. Taherzadeh, H. Nikopour, A. Bayesteh , and H. Baligh, “SCMA codebook design,” IEEE Vehicular Technology Conference, DOI: 10.1109/VTCFall.2014.6966170, Dec. 2014.
    [39] Lu Lei, Chen Yan, Guo Wenting, Yang Huilian, Wu Yiqun, and Xing Shuangshuang, ”Prototype for 5G New Air Interface Technology SCMA and Performance Evaluation,” China Communications Supplement No.1 2015
    [40] Shutian Zhang, Kexin Xiao, Baicen Xiao, Zhiyong Chen, and Bin Xia, Dageng Chen, and Shaodan Ma, ”A Capacity-based Codebook Design Method for Sparse Code Multiple Access Systems,” 2016 8th International Conference on Wireless Communications and Signal Processing (WCSP), Oct. 2016.
    [41] Razieh Razavi, Mohammed AL-Imari, Muhammad Ali Imran, Reza Hoshyar, and Dageng
    Chen, ”On Receiver Design for Uplink Low Density Signature OFDM (LDSOFDM),” IEEE Transactions on Communications, 04 September 2012.
    [42] Jincheng Dai, Kai Niu, Chao Dong, and Jiaru Lin, ”Improved Message Passing Algorithms for Sparse Code Multiple Access,” IEEE Transactions on Vehicular Technology , 18 August 2017.
    [43] Yiqun Wu, Shunqing Zhang, and Yan Chen, ”Iterative multiuser receiver in sparse code multiple access systems,” 2015 IEEE International Conference on Communications
    (ICC), 10 September 2015.
    [44] Shuyi Chen, Tianyu Zhao, Hsiao-Hwa Chen, Zhiping Lu, and Weixiao Meng ”Performance Analysis of Downlink Coordinated Multipoint Joint Transmission in Ultra- Dense Networks,” IEEE Network,pp. 106-114 August 2017.
    [45] S. M. Yu and S.-L. Kim, ”Downlink capacity and base station density in cellular
    networks,” in Proc. 11th Int. Symp. Model. Optim. Mobile Ad Hoc Wireless Netw. (WiOpt), Tsukuba, Japan, May 2013, pp. 119–124.
    [46] D. L´opez-P´erez, M. Ding, H. Claussen, and A. H. Jafari, ”Towards 1 Gbps/UE in cellular systems Understanding ultra-dense small cell deployments,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2078–2101, 4th Quart., 2015.
    [47] Mahmoud Kamel, Student Member, IEEE, Walaa Hamouda, Senior Member, IEEE, and Amr Youssef, Senior Member, IEEE, ”Ultra-Dense Networks : A Survey,” IEEE Communications Surveys and Tutorials, 23 May 2016, pp. 2522-2545.
    [48] Wen Sun, and Jiajia Liu ”2-to-M Coordinated Multipoint-Based Uplink Transmission in Ultra-Dense Cellular Networks,” IEEE Transactions on Wireless Communications, 23 October 2018.
    [49] Mahmoud Kamel, Walaa Hamouda, and Amr Youssef ”Uplink Coverage and Capacity
    Analysis of mMTC in Ultra-Dense Networks,” IEEE Transactions on Vehicular Technology,
    18 November 2019.
    [50] Konpal Shaukat Ali, Martin Haenggi, Hesham ElSawy, and Anas Chaaban ”Downlink Non-Orthogonal Multiple Access (NOMA) in Poisson Networks,” IEEE Transactions on Communications, FEBRUARY 2019.
    [51] Hina Tabassum, Ekram Hossain, and Jahangir Hossain ”Modeling and Analysis of Uplink Non-Orthogonal Multiple Access in Large-Scale Cellular Networks Using Poisson Cluster Processes,” IEEE Transactions on Communications, 27 April 2017.
    [52] Bin Xia, Jinglun Wang, Kexin Xiao, Yichen Gao, Yao Yao, Shaodan Ma”Outage Performance
    Analysis for the Advanced SIC Receiver inWireless NOMA Systems,” IEEE Transactions on Vehicular Technology, 08 March 2018.
    [53] Lei Lei, Di Yuan, Chin Keong Ho, and Sumei Sun ”Power and Channel Allocation for Non-Orthogonal Multiple Access in 5G Systems Tractability and Computation,” IEEE
    Transactions on Wireless Communications, 11 October 2016.
    [54] Boya Di, Lingyang Song, and Yonghui Li ”Sub-Channel Assignment, Power Allocation,and User Scheduling for Non-Orthogonal Multiple Access Networks,” IEEE Transactions on Wireless Communications, 05 September 2016
    [55] Garima Chopra, Rakesh Kumar Jha, and Sanjeev Jain ”Rank-Based Secrecy Rate Improvement Using NOMA for Ultra Dense Network,” IEEE Transactions on Vehicular Technology, 04 July 2019.
    [56] Chee Wei Tan, and A. Robert Calderbank ”Multiuser Detection of Alamouti Signals,” IEEE Transactions on Communications, 17 July 2009.
    [57] Hien Quoc Ngo, Erik G. Larsson, Thomas L. Marzetta ”Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems,” IEEE Transactions on Communications, 07 February 2013.
    [58] Shihai Shao, Youxi Tang, Ting Kong, Kai Deng, Ying Shen ”Performance Analysis of a Modified V-BLAST System With Delay Offsets Using Zero-Forcing Detection,” IEEE Transactions on Vehicular Technology, 19 November 2007.
    [59] Xueying Hou, Chenyang Yang, and Buon Kiong Lau ”Impact of Nonorthogonal Training
    on Performance of Downlink Base Station Cooperative Transmission,” IEEE Transactions on Vehicular Technology, 19 September 2011.
    [60] Mohamed Elhattab, Mohamed Amine Arfaoui, and Chadi Assi ”A Joint CoMP CNOMA for Enhanced Cellular System Performance,” IEEE Communications Letters, 08,May,2020.
    [61] Yasser Al-Eryani, Ekram Hossain, and Dong In Kim ”Generalized Coordinated Multipoint (GCoMP)-Enabled NOMA: Outage, Capacity, and Power Allocation,” IEEE Transactions on Communications, 30 July 2019.

    無法下載圖示 校內:2025-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE