| 研究生: |
蔡政儒 Tsai, Cheng-Ju |
|---|---|
| 論文名稱: |
調和理論與意象轉換在產品配色系統建構與應用研究 A Study on the Construction and Application of a Color Design System with Harmony Theory and Image Transformation |
| 指導教授: |
蕭世文
Hsiao, Shih-Wen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 色彩調和理論 、意象轉換 、Munsell色彩轉換公式 、產品配色系統 |
| 外文關鍵詞: | Color Harmony Theory, Image Transformation, Munsell Color System Conversion, Product Color Planning System |
| 相關次數: | 點閱:126 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
產品的配色是決定產品外觀給人感覺的重要因素,一個成功的產品配色需要倚賴設計師的經驗與靈感。熟練的配色經驗可找到令人感覺調和的配色設計,而豐富的靈感則可設計出量多且樣多的色彩組合。本研究以色彩調和理論與意象轉換為基礎,發展一個可產生調和感的配色設計以及提供配色靈感的產品配色系統,輔助設計師執行產品配色設計工作。
本研究所開發的產品配色系統包含兩種使用模式:「調和配色模式」與「意象轉換模式」。調和色彩產生模式以色彩調和理論為基礎,產生令人感覺調和的色彩組合,並且推導高準度的Munsell色彩轉換公式,使得以Munsell色彩系統為基礎的調和理論配色方法,可在以sRGB色彩系統為基礎的電腦螢幕上直接操作,並且即時呈現產品配色結果。意象轉換模式則是以模糊辨識為核心技術來推導意象轉換演算法,將自然生物圖片中的色彩意象轉換至產品配色設計上。由設計師建立大量的自然生物圖片資料庫後,系統可快速產生多樣的配色方案,並且依照意象相似度由高至低排列,提供設計師配色參考,提升配色效率。
以兩個應用研究「日常用品之調和配色設計」與「台灣蝴蝶色彩意象轉換至排球鞋配色設計」來驗證本產品配色系統的可行性。案例驗證結果指出,系統可產生具有調和色彩的配色設計,也可以產生具有蝴蝶色彩意象的排球鞋配色,可輔助設計師以系統化且有效率的方式,產生量多且樣多的產品配色設計。
The color of product is an important factor influencing the feelings of the appearance of product. A successful color scheme of product is usually relies on designer’s experience and inspiration. Skilled experience for matching colors could find the harmony color schemes easily. With rich inspirations, designers could design diverse color schemes. Thus, this research developed a product color planning system based on color harmony theory, which could produce harmony color schemes and provide inspirations to assist designers to design color schemes of product.
The developed system includes two usage modes, “Harmony Color-Generation Mode” and “Color Image-Transforming Mode.” Harmony Color-Generation Mode could produce harmony color schemes based on color harmony theory, including an accurate Munsell color system conversion. Moreover, the color matching process based on Munsell color system can be directly operated with the sRGB monitor, with real-time presentation of color planning results. Color Image-Transforming Mode could transform the color image of natural bio picture into product color planning by the derived image algorithm based on fuzzy recognition. After establishing the database of natural bio pictures by designer, the system could generate diverse color schemes immediately, and arrange from high to low according to the image similarity rates of color schemes to provide a reference to designers and enhance the color matching efficiency.
The applications, “the color planning design of basic commodities” and “Transforming the color images of Taiwan butterflies into the color planning design of volleyball shoes,” are used to verify the feasibility of the system. The results indicated that the system could generate the color schemes with harmony colors and the color schemes of volleyball shoes with color images of Taiwan’s butterflies. Therefore, the system could assist designers to design numerous and diverse color schemes of products by systematic and efficient process.
Biró, L.P., Bálint, Z., Kertész, K., Vértesy, Z., Márk, G.I., Horváth, Z.E., Balázs, J., Méhn, D., Kiricsi, I., Lousse, V., & Vigneron, J.P. (2003). Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. Physical Review E, 67, 021907-1–021907-7.
CIE, C. (2004). 15: 2004. Central Bureau of the CIE, Vienna.
Codd, E.F. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13(6), 377–387.
D'Andrade, R. G., & Romney, A. K. (2003). A quantitative model for transforming reflectance spectra into the Munsell color space using cone sensitivity functions and opponent process weights. Proceedings of the National Academy of Sciences, 100(10), 6281-6286.
Gane, C., & Sarson, T. (1979). Structured Systems Analysis: Tools and Techniques. Englewood Cliffs, NJ: Prentice-Hall.
Goel, A.K., Vattam, S., Wiltgen, B., & Helms, M. (2012). Cognitive, collaborative, conceptual and creative – Four characteristics of the next generation of knowledge-based CAD systems: A study in biologically inspired design. Computer Aided Design, 44, 879–900.
Hsiao, S. W., Chiu, F. Y., & Hsu, H. Y. (2008). A computer‐assisted colour selection system based on aesthetic measure for colour harmony and fuzzy logic theory. Color Research & Application, 33(5), 411-423.
Hsiao, S. W., Hsu, C. F., & Tang, K. W. (2013). A consultation and simulation system for product color planning based on interactive genetic algorithms. Color Research & Application, 38(5), 375-390.
Hsiao, S. W., & Tsai, H. C. (2004). Use of gray system theory in product‐color planning. Color Research & Application, 29(3), 222-231.
Hsiao, S. W., Wang, M. F., Lee, D. J., & Chen, C. W. (2015). A study on the application of an artificial neural algorithm in the color matching of Taiwanese cultural and creative commodities. Color Research & Application, 40(4), 341-351.
Hsiao, S. W., & Yang, M. H. (2016). A methodology for predicting the color trend to get a three‐colored combination. Color Research & Application. Wiley Online Library.
Hu, G., Zhang, M., Pan, Z., Lin, L., Rhalibi, A. E., & Song, J. (2015). A User‐Oriented Method for Preferential Color Scheme Generation. Color Research & Application, 40(2), 147-156.
Laamanen, H., Jääskeläinen, T., & Parkkinen, J. (2006). Conversion between the reflectance spectra and the Munsell notations. Color Research & Application, 31(1), 57-66.
Lewis, C. (1982). Industrial and business forecasting methods. London: Butterworth Scientific.
Li, Y., Qin, K., & He, X. (2014). Some new approaches to constructing similarity measures. Fuzzy Sets and Systems, 234, 46-60.
Liu, R.T., Liaw, S.S., & Maini, P.K. (2006). Two-stage Turing model for generating pigment patterns on the leopard and the jaguar. PHYSICAL REVIEW E, 74(1), 011914-1 – 011914-8.
Luke, J. T. (1994). The New Munsell Student Color Set. New York: Fairchild Publications, 1-3.
Mahyar, F., Cheung, V., & Westland, S. (2010). Different transformation methods between CIELAB coordinates and Munsell hue. Coloration Technology, 126(1), 31-36.
Miyahara, M., & Yoshida, Y. (1988). Mathematical transform of (R, G, B) color data to Munsell (H, V, C) color data. In Visual Communications and Image Processing'88: Third in a Series, 650-657. International Society for Optics and Photonics.
Moon P, Spencer DE. (1994a). Aesthetic measure applied to color harmony. The Journal of the Optical Society of America, 34, 234-242.
Moon P, Spencer DE. (1944b). Area in color harmony. The Journal of the Optical Society of America, 34, 93-103.
Moon P, Spencer DE. (1944c). Geometric formulation of classical color harmony. The Journal of the Optical Society of America, 34,46-60.
Munsell AH. (1966). The Munsell Book of Color, Glossy Collection. Grand Rapids, MI: Munsell Color Company, 1-4.
Nagel, J.K.S., & Stone, R.B. (2012). A computational approach to biologically inspired design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 26, 161–176.
Nagel, R.L., McAdams, D.A., Shu, L.H., Midha, P.A., Tinsley, A., & Stone, R.B. (2008). Exploring the Use of Functional Models in Biomimetic Conceptual Design. Journal of Mechanical Design, 130(12), 121102-1–121102-13.
Newhall, S. M., Nickerson, D., & Judd, D. B. (1943). Final Report of the OSA Subcommittee on the Spacing of the Munsell Colors. JOSA, 33(7), 385-418.
Ohsaki, N. (1995). Preferential predation of female butterflies and the evolution of Batesian mimicry. Nature, 378, 173–175.
Papakostas, G.A., Hatzimichailidis, A.G., & Kaburlasos, V.G. (2013). Distance and similarity measures between intuitionistic fuzzy sets: A comparative analysis from a pattern recognition point of view. Pattern Recognition Letters, 34, 1609–1622.
Philippe, J.D. (2010). Birds of the world 365 days. NY: Abrams.
Saadane, A., Larabi, M.C., & Charrier, C. (2012). Color and image compression. In Fernandez-Maloigne, C., Robert-Inacio, F., & Macaire, L. (Eds.). Digital Color: Acquisition, Perception, Coding and Rendering (chap. 7, pp. 187–225). Hoboken, NJ: John Wiley & Sons.
Sauer T. (2006). Numerical analysis. Pearson Addison-Wesley.
Sue, L.H., Ueda, K., Chiu, I., & Cheong, H. (2011). Biologically inspired design. Manufacturing Technology, 60, 673–693.
Thomson R. (2008). Vincent Van Gogh: The Starry Night. New York: The Museum of Modern Art; 2008.
Tomas, J.B., Hardeberg, J.Y., Trémeau, A. (2013) Cross-Media Color Reproduction and Display Characterization. Advanced Color Image Processing and Analysis. New York: Springer; 111–112.
Tsai, H. C., & Chou, J. R. (2007). Automatic design support and image evaluation of two-coloured products using colour association and colour harmony scales and genetic algorithm. Computer-Aided Design, 39(9), 818-828.
Val, B. (2011). Colour in the garden. LON: Merrell, 154-155.
Wadia, A.P., & McAdams, D.A. (2010). Developing biomimetic guidelines for the highly optimized and robust design of complex products or their components. Paper Presented at the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference in Canada, 6, 307–322.
Wang, W.J. (1997). New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems, 85, 305–309.
Wright, W. D. (1967). Color Science, Concepts and Methods. Quantitative Data and Formulas. Physics Bulletin, 18(10), 353.
校內:2021-02-28公開