簡易檢索 / 詳目顯示

研究生: 蘇穎珊
Su, Ying-Shan
論文名稱: 基於多代理架構之智慧代理人開發:以業務代理人為例
Development and Technological Implementation of an Intelligent Agent Based on a Multi-Agent Architecture: A Case Study of a Sales Agent
指導教授: 陳裕民
Chen, Yuh-Min
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 96
中文關鍵詞: 智慧代理人圖形檢索增強生成多模態檢索知識圖譜業務輔助系統混合檢索
外文關鍵詞: intelligent agent, GraphRAG, multi-modal retrieval, knowledge graph, business support, hybrid search
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一套基於多代理架構的智慧代理人系統,以業務代理人為例,探討其在醫療面板產業中應對多模態知識檢索與回應挑戰的可行性。醫療面板產業的業務部門需要整合多元資料來源(如產品手冊、報價規範、操作圖表等),並即時提供準確回應。然而,傳統FAQ或關鍵字檢索系統在處理跨來源、多模態資料時,往往面臨知識斷層、回應延遲與正確率不足的問題,進而影響工作效率與客戶滿意度。
    為回應此需求,本研究提出一個多代理人架構,包含主控代理人(Master Agent)及三個子代理人(知識型、規則型與分析型),各子代理人分工處理不同知識任務,並由主控代理人協調資源與任務分配,以達到最佳化效能。
    技術創新主要體現在混合檢索策略的應用。系統結合知識圖譜與向量檢索技術,實現跨模態資料的整合檢索,彌補傳統檢索無法有效處理多樣化資料的不足,進而提升回應的即時性與準確性。此外,透過引入GraphRAG技術,系統在資料檢索的廣度與深度上更為全面。另一方面,本研究設計了Routing策略,能依據任務特性動態分配代理人角色,確保每筆查詢獲得最合適的處理,從而滿足不同業務需求並提升整體決策支援能力。

    This study proposes a multi-agent intelligent system designed to enhance multi-modal knowledge retrieval and response in the business departments of the medical panel industry. Traditional keyword-based systems often struggle with integrating diverse data formats—such as manuals, pricing rules, and diagrams—leading to delayed and inaccurate responses. To address this, the system adopts a modular architecture comprising a Master Agent and three specialized sub-agents (knowledge-based, rule-based, and analysis-based), each responsible for handling different task types under dynamic coordination.
    The system leverages a hybrid retrieval approach that combines knowledge graphs and vector search, enhanced by GraphRAG, to improve the accuracy and relevance of responses across modalities. A flexible routing mechanism further ensures that queries are assigned to the most appropriate agent, improving efficiency and adaptability.
    The proposed architecture not only improves business response capabilities but also offers a scalable framework for intelligent agents in broader enterprise applications. Future work will focus on completing the remaining agent modules and expanding real-world deployment scenarios.

    摘要 3 誌謝 9 表目錄 14 圖目錄 15 第一章、緒論 16 1.1 研究背景 16 1.2 研究動機 16 1.3 研究目的 18 1.4 研究問題 18 1.5 研究項目與方法 20 1.6 研究步驟 21 第二章、文獻探討 23 2.1 智慧代理系統發展與應用現況 23 2.2 多代理系統(MULTI-AGENT SYSTEM, MAS)架構設計 24 2.2.1 MAS 理論基礎與系統分類 24 2.2.2 架構設計要素與功能模組 24 2.2.3 應用情境與設計優劣比較 25 2.3 多模態資料處理與應用 26 2.3.1 多模態資料的重要性與系統需求 26 2.3.2 多模態 RAG 的技術發展趨勢 26 2.3.3 多模態資料處理方法 27 2.3.4 與本研究應用的連結 28 2.4 檢索增強生成(RAG)技術與變體設計 28 2.4.1 傳統 RAG 架構 28 2.4.2 GraphRAG:結合知識圖譜的 RAG 拓展 29 2.4.3 多模態 RAG 的進展 29 2.4.4 變體比較與技術選擇 29 2.4.5 本研究採用方式與原因 30 2.5 知識圖譜與企業知識整合 30 2.5.1 向量索引與圖譜關係查詢應用比較 30 2.5.2 在企業場域的應用現況 31 2.5.3 技術挑戰與最佳實踐 31 2.5.4 與本研究之對應性 32 2.6 多任務判別與智慧任務分流技術 32 2.6.1 多任務判別的重要性 32 2.6.2 Intent 分類與輸入資料處理方式 33 2.6.3 Routing 策略與多代理系統協調 33 2.6.4 本研究之 Routing 方法設計 34 2.7 文獻探討總結 34 第三章、系統設計 36 3.1 業務應用場域分析 36 3.1.1 業務導向功能規劃 36 3.1.2 功能方法設計 37 3.1.3 功能模組劃分 41 3.2 智慧代理人架構與角色設計 42 3.2.1 多代理架構與角色功能 43 3.2.2 系統模組串接與執行流程 46 3.3 主代理人ROUTING策略設計 49 3.3.1 設計目的 50 3.3.2 Routing流程規劃 50 3.3.3 任務分類與依據 51 3.4 子代理人功能模組設計 53 3.4.1 知識型子代理人功能設計 53 3.4.2 規則型子代理人功能設計 54 3.4.3 分析型子代理人功能設計 56 第四章、模型設計與技術開發 59 4.1 主代理人模組實作 59 4.1.1 查詢處理流程 59 4.2 子代理人模組實作 61 4.2.1 功能技術對應 61 4.2.2 知識型 64 4.2.3 規則型 67 4.2.4 分析型 71 4.3 多模態資料處理實作 76 4.3.1 非文字資料抽取與格式轉換 77 4.3.2 非文字資料的摘要生成與文本分段 78 4.3.3 文字資料實體抽取與知識圖譜建立 79 4.3.4 多模態提示詞設計 80 第五章、案例 83 5.1 系統功能展示與操作流程 83 5.2 實例測試與回應結果 86 5.3 小結 88 第六章、結論與討論 90 6.1 結論 90 6.2 建議與未來方向 90 參考文獻 92

    Acloudear. (2024). Inquiry and procurement process in manufacturing enterprises. Acloudear.
    Anthropic. (2025, June 13). How we built our multi-agent research system. Anthropic Blog.
    Anonymous. (2025). Review of autonomous and collaborative agentic AI and multi-agent systems for enterprise applications. International Journal of Innovative Research in Engineering & Management (IJIREM).
    Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at work. National Bureau of Economic Research Working Paper.
    Cai, F., Zhou, W., Mi, F., & Faltings, B. (2021). SLIM: Explicit slot-intent mapping with BERT for joint multi-intent detection and slot filling. arXiv preprint arXiv:2105.01929.
    Chen, S., Liu, Y., Han, W., Zhang, W., & Liu, T. (2024). A survey on LLM-based multi-agent system: Recent advances and new frontiers in application. arXiv preprint arXiv:2412.17481.
    Chen, W., Hu, H., Chen, X., Verga, P., & Cohen, W. (2022). MuRAG: Multimodal retrieval-augmented generator for open question answering over images and text. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 5558–5570). Association for Computational Linguistics.
    Ding, Y., Facciani, M., Poudel, A., Joyce, E., Aguinaga, S., Veeramani, B., Bhattacharya, S., & Weninger, T. (2025). Citations and trust in LLM generated responses. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 22, pp. 23787–23795).
    Edge, D., Larson, J., Truitt, S., Mody, A., Chao, A., Bradley, J., … (2024). From local to global: A Graph RAG approach to query-focused summarization. ICLR submission. OpenReview.
    EICopilot. (2025). EICopilot: Search and explore enterprise information over Graph2NL and ICL. arXiv preprint arXiv:2501.13746.
    Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Guo, Q., Wang, M., & Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997.
    Gelashvili-Luik, T., Vihma, P., & Pappel, I. (2025). Navigating the AI revolution: Challenges and opportunities for integrating emerging technologies into knowledge management systems—Systematic literature review. Frontiers in Artificial Intelligence, 8, 1595930.
    Gupta, S., Ranjan, R., & Singh, S. N. (2024). A comprehensive survey of retrieval-augmented generation (RAG): Evolution, current landscape and future directions. arXiv preprint arXiv:2410.12837.
    Han, H., Wang, Y., Shomer, H., Guo, K., Ding, J., Lei, Y., … Tang, J. (2025). Graph-R1: Towards agentic GraphRAG framework via end-to-end reinforcement learning. arXiv preprint.
    Hogan, A., Blomqvist, E., Cochez, M., d'Amato, C., de Melo, G., Gutiérrez, C., … Kirrane, S. (2021). Knowledge graphs. ACM Computing Surveys, 54(4), 71.
    Hu, Y., Lei, Z., Zhang, Z., Pan, B., Ling, C., & Zhao, L. (2024). GRAG: Graph retrieval-augmented generation. arXiv preprint.
    Krishnan, N. (2025). Advancing multi-agent systems through model context protocol. arXiv preprint arXiv:2504.21030.
    Ledro, C., Nosella, A., Vinelli, A., Dalla Pozza, I., & Souverain, T. (2025). Artificial intelligence in customer relationship management: A systematic framework for a successful integration. Journal of Business Research, 199, 115531.
    Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., … & Riedel, S. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks. arXiv preprint arXiv:2005.11401.
    Li, X., Wang, S., Zeng, S., Wu, Y., & Yang, Y. (2024). A survey on LLM-based multi-agent systems: Workflow, infrastructure, and challenges. Computational Visual Media. Springer Nature.
    Liu, J., Tan, Y. K., Fu, B., & Lim, K. H. (2024). Intent-aware dialogue generation and multi-task contrastive learning for multi-turn intent classification. arXiv preprint.
    Liu, P., Liu, X., Yao, R., Liu, J., Meng, S., Wang, D., & Ma, J. (2025). Hierarchical multi-agent multimodal retrieval-augmented generation (HM-RAG). arXiv preprint.
    MarketsandMarkets. (2023). Multimodal AI market by offering, modality, technology, application, and region—Global forecast to 2028. MarketsandMarkets.
    Martis, L. (2024, December 10). LuminiRAG: Vision-enhanced Graph RAG for complex multi-modal document understanding. TechRxiv.
    McKinsey & Company. (2023). The state of AI in 2023: Generative AI’s breakout year. McKinsey Global Institute.
    Nascimento, N., Alencar, P., & Cowan, D. (2023). Self-adaptive large language model (LLM)-based multiagent systems. arXiv preprint arXiv:2307.06187.
    Neo4j Blog. (2024, June 5). Knowledge graph vs. vector RAG: Optimization & analysis. Neo4j.
    NVIDIA Developer Blog. (2024, March 20). An easy introduction to multimodal retrieval-augmented generation. NVIDIA.
    Plekhanov, D., Franke, H., & Netland, T. H. (2023). Digital transformation: A review and research agenda. European Management Journal, 41(6), 821–844.
    Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., … & Sutskever, I. (2021). Learning transferable visual models from natural language supervision. In Proceedings of the 38th International Conference on Machine Learning (ICML) (Vol. 139, pp. 8748–8763). PMLR.
    Rožanec, J. M., Zajec, P., Kenda, K., Novalija, I., Fortuna, B., & Mladenić, D. (2021). XAI-KG: Knowledge graph to support XAI and decision-making in manufacturing. arXiv preprint arXiv:2105.01929.
    Schneider, P., Schopf, T., Vladika, J., & Matthes, F. (2024). Enterprise use cases combining knowledge graphs and natural language processing. In Informing Possible Future Worlds: Essays in Honour of Ulrich Frank (pp. 271–285). Logos Verlag Berlin GmbH.
    Snowflake Blog. (2025, April 21). Evaluating multimodal vs. text-based retrieval for RAG with Snowflake Cortex. Snowflake.
    Superteams.ai Blog. (2024, November 30). A deep-dive into vector search and knowledge graph for AI. Superteams.ai.
    Tran, K.-T., Dao, D., Nguyen, M.-D., Pham, Q.-V., O’Sullivan, B., & Nguyen, H. D. (2025). Multi-agent collaboration mechanisms: A survey of LLMs. arXiv preprint arXiv:2501.06322.
    Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901.
    Wang, Z., Panda, R., Karlinsky, L., Feris, R., Sun, H., & Kim, Y. (2023). Multitask prompt tuning enables parameter-efficient transfer learning. arXiv preprint.
    Wikipedia. (2025). Multimodal representation learning. In Wikipedia.
    Wu, F., Li, Z., Wei, F., Li, Y., Ding, B., & Gao, J. (2025). Talk to right specialists: Routing and planning in multi-agent system for question answering. arXiv preprint.
    Yan, B., Zhang, X., Zhang, L., Zhang, L., Zhou, Z., Miao, D., & Li, C. (2025). Beyond self-talk: A communication-centric survey of LLM-based multi-agent systems. arXiv preprint arXiv:2502.14321.
    Yue, Y., Zhang, G., Liu, B., Wan, G., Wang, K., Cheng, D., & Qi, Y. (2025). MasRouter: Learning to route LLMs for multi-agent systems. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Long Papers).
    Zhu, X., Xie, Y., Liu, Y., Li, Y., & Hu, W. (2025). Knowledge graph-guided retrieval augmented generation (KG²RAG). In Proceedings of NAACL 2025 Long Papers (pp. 8912–8924). Association for Computational Linguistics.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE