研究生: |
莊博凱 Chuang, Po-kai |
---|---|
論文名稱: |
SSEA3和β3GalT5在乳癌中功能性與訊息調控之探討 Functional Studies and Signaling Pathway of Stage-Specific Embryonic Antigen-3 (SSEA3) and β1,3-Galactosyltransferase V (β3GalT5) in Breast Cancer |
指導教授: |
翁啟惠
Wong, Chi-Huey 張權發 Chang, Chuan-Fa |
學位類別: |
博士 Doctor |
系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | β1-3半乳糖轉移酶5 、階段特異性胚胎抗-3 、唾液酸化階段特異性胚胎抗-3 、岩藻醣化階段特異性胚胎抗原3 、癌症專一性抗原 、標靶治療 、Focal adhesion kinase (FAK) 、醣脂 、訊息傳遞 |
外文關鍵詞: | β3GalT5, SSEA3, SSEA4, Globo-H, cancer specific antigen, targeted therapy, FAK, glycolipid, signaling |
相關次數: | 點閱:89 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醣脂質(Glycosphingolipids,簡稱GSLs)是一種表現在細胞膜上的醣化脂類,當中globo-series的GSLs在癌細胞中高度或專一表達,因此可被當作精準治療或診斷之標的。其中階段特異性胚胎抗原3(Stage specific embryonic antigen 3, 簡稱SSEA3);唾液酸化階段特異性胚胎抗原4 (簡稱 SSEA4);岩藻醣化階段特異性胚胎抗原3 (簡稱Globo-H)更是高度表達在惡性組織中,在臨床上與疾病的進程有相當的正關聯性。在本研究中指出SSEA3不僅是細胞膜上的標記分子,並且促進許多訊息傳遞中酪氨酸激酶相關路徑的活化,在細胞內,主要是由GalNAcβ3Galα4Galβ4GlcβCer (簡稱Gb4)前驅物經酵素β1,3-半乳糖轉化酶第五型(簡稱β3GalT5)催化作用,接上beta 1,3鍵結的半乳糖而生成SSEA3 (別名Gb5),進而衍生後續的SSEA4或Globo-H,所以β3GalT5是主要影響以上三種癌症關聯性醣脂表達之重要酵素,但是β3GalT5及SSEA3對於乳癌細胞扮演的功能性與訊息調控機制均尚未清楚了解。
因此本篇研究中,觀察乳癌病人之組織切片,在惡性腫瘤處發現有大量的β3GalT5表現,此外β3GalT5的表達與病人之疾病惡化程度及低存活率成高度正相關。當我們利用基因抑制的方法降低酵素β3GalT5的表達,同時使得細胞表面降低SSEA3的表現,造成乳癌細胞株MCF7及MDA-MB-231細胞生長減緩,也觀察到此現象導致乳癌細胞走向細胞凋亡路徑,此路徑證實是透過Fas及FADD下游引發caspase-3及caspase-8活化所主導的細胞凋亡,並且,在抑制β3GalT5與SSEA3表現的同時,也造成Focal adhesion kinase (FAK) 蛋白的減少,以致於抑制乳癌細胞爬行與貼附的能力。經過共同免疫沉降與免疫螢光染色的實驗,證實在細胞膜上脂筏區域,可以發現到SSEA3會與caveolin1 (CAV1)及FAK形成聚合體,推測SSEA3聚合體可以共同調控癌細胞的生長,更發現此SSEA3聚合體與Receptor-interacting protein (RIP) 蛋白會協同作用,負責協助FAK中間協調細胞生長的路徑,或者減少SSEA3聚合時,負責啟動FADD下游細胞凋亡路徑,因此證實SSEA3可以藉由FAK與RIP的結合以調控細胞的命運。
本篇論文發現在乳癌細胞中高度表達的SSEA3與β3GalT5,對於乳癌細胞的惡化侵襲與生長訊息調控之影響,扮演重要角色,因此將可做為未來研發抗癌藥物治療上的應用之基礎方針。
Glycosphingolipids (GSLs) are a type of glycolipids found on cell membrane, some of which are highly or specifically expressed in cancer and therefore can be the targets for therapeutic development. Members of the globo-series GSLs, SSEA3 (Gb5), SSEA4 and Globo-H, are specific GSLs observed in many malignant tissues and correlate with cancer progression. Our studies indicate that these globo-series GSLs can not only serve as markers, but also promote certain signaling pathways associated with tyrosine kinases. In breast cancer, the enzyme β1,3-galactosyltransferase V (β3GalT5) catalyzes the addition of β1,3-linked galactose to Gb4 (GalNAcβ3Galα4Galβ4GlcβCer) to form SSEA3, which serves as the precursor of both SSEA4 (α2,3-sialyl-SSEA3) and Globo-H (α1,2-fucosyl-SSEA3). β3GalT5 is therefore a key enzyme in controlling the expression of these three cancer-related glycolipids. However, the functional roles and regulatory mechanism of β3GalT5 and SSEA3 in breast cancer remain largely unclear.
Here, we show that the expression of β3GalT5 is up-regulated in breast carcinoma and significantly correlates with tumor progression and poor survival in patients with breast cancer. Knockdown of β3GalT5 in breast cancer cells MCF-7 and MDA-MB-231 were found to induce cancer cell apoptosis and inhibit cancer proliferation, and the induced apoptosis was through Fas/FADD-dependent pathway that activated caspase-3 and caspase-8. In addition, lack of β3GalT5 in MDA-MB-231 cells decreased focal adhesion kinase (FAK) expression and its interaction with SSEA3 that suppressed cell migration and adhesion. The co-immunoprecipitation and immunofluorescence results showed that SSEA3, caveolin1 (CAV1), and FAK form a complex on MDA-MB231 cells membrane lipid raft, suggesting that the SSEA3-CAV1-FAK complex contributed to cancer survival. Moreover, we found that the SSEA3 complex is associated with receptor-interacting protein (RIP), a kinase that shuttles between FADD and FAK. We also demonstrated that knockdown of 3GalT5 reduced its association of RIP and increased interaction to FADD that led to cell apoptosis.
Thus, the high expression level of SSEA3 and β3GalT5 in human breast cancer provides a link between tumor progression and survival signaling pathway, and this new finding could be useful for the therapeutic development of breast cancer.
[1] R. L.Siegel, K. D.Miller, and.Jemal, “Cancer statistics,” CA Cancer J Clin, vol. 66, no. 1, pp. 7–30, 2016.
[2] G.Dong, D.Wang, X.Liang, H.Gao, L.Wang, X.Yu, andJ.Liu, “Factors related to survival rates for breast cancer patients,” Int J Clin Exp Med, vol. 7, no. 10, pp. 3719–3724, 2014.
[3] G. W.Sledge, E. P.Mamounas, G. N.Hortobagyi, H. J.Burstein, P. J.Goodwin, and. C.Wolff, “Past, present, and future challenges in breast cancer treatment.,” J. Clin. Oncol., vol. 32, no. 19, pp. 1979–86, Jul.2014.
[4] A. C.Gregório, M.Lacerda, P.Figueiredo, S.Simões, S.Dias, andJ. N.Moreira, “Therapeutic Implications of the Molecular and Immune Landscape of Triple-Negative Breast Cancer,” Pathol. Oncol. Res., Sep.2017.
[5] S. J.Danishefsky, Y. K.Shue, M. N.Chang, and. H.Wong, “Development of Globo-H Cancer Vaccine,” Acc. Chem. Res., vol. 48, no. 3, pp. 643–652, 2015.
[6] Y.-L.Huang, J.-T.Hung, S. K. C.Cheung, H.-Y.Lee, K.-C.Chu, S.-T.Li, Y.-C.Lin, C.-T.Ren, T.-J. R.Cheng, T.-L.Hsu, A. L.Yu, C.-Y.Wu, andC.-H.Wong, “Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer,” Proc. Natl. Acad. Sci., vol. 110, no. 7, pp. 2517–2522, 2013.
[7] W.-W.Chang, C. H.Lee, P.Lee, J.-J. J.Lin, C.-W.Hsu, J.-T.Hung, J.-J. J.Lin, J.-C. J.Yu, L.Shao, J.-C. J.Yu, C.-H.Wong, and. L.Yu, “Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis.,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 33, pp. 11667–11672, 2008.
[8] Y.-W.Lou, P.-Y.Wang, S.-C.Yeh, P.-K.Chuang, S.-T.Li, C.-Y.Wu, K.-H.Khoo, M.Hsiao, T.-L.Hsu, andC.-H.Wong, “Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers.,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 7, pp. 2482–7, Feb.2014.
[9] S. K. C.Cheung, P.-K.Chuang, H.-W.Huang, W. W.Hwang-Verslues, C. H.-H.Cho, W.-B.Yang, C.-N.Shen, M.Hsiao, T.-L.Hsu, C.-F.Chang, andC.-H.Wong, “Stage-specific embryonic antigen-3 (SSEA-3) and β3GalT5 are cancer specific and significant markers for breast cancer stem cells,” Proc. Natl. Acad. Sci., vol. 113, no. 4, pp. 960–965, Jan.2016.
[10] D.Zhou, T. R.Henion, F. B.Jungalwala, E. G.Berger, and.Hennet, “The beta 1,3-galactosyltransferase beta 3GalT-V is a stage-specific embryonic antigen-3 (SSEA-3) synthase.,” J. Biol. Chem., vol. 275, no. 30, pp. 22631–4, Jul.2000.
[11] S.Saito, H.Aoki, A.Ito, S.Ueno, T.Wada, K.Mitsuzuka, M.Satoh, Y.Arai, and.Miyagi, “Human alpha2,3-sialyltransferase (ST3Gal II) is a stage-specific embryonic antigen-4 synthase.,” J. Biol. Chem., vol. 278, no. 29, pp. 26474–9, Jul.2003.
[12] V. P.Rajan, R. D.Larsen, S.Ajmera, L. K.Ernst, andJ. B.Lowe, “A cloned human DNA restriction fragment determines expression of a GDP-L-fucose: beta-D-galactoside 2-alpha-L-fucosyltransferase in transfected cells. Evidence for isolation and transfer of the human H blood group locus.,” J. Biol. Chem., vol. 264, no. 19, pp. 11158–67, Jul.1989.
[13] S.Rouquier, J. B.Lowe, R. J.Kelly, A. L.Fertitta, G. G.Lennon, and.Giorgi, “Molecular cloning of a human genomic region containing the H blood group alpha(1,2)fucosyltransferase gene and two H locus-related DNA restriction fragments. Isolation of a candidate for the human Secretor blood group locus.,” J. Biol. Chem., vol. 270, no. 9, pp. 4632–9, Mar.1995.
[14] V.Levina, A. M.Marrangoni, R.DeMarco, E.Gorelik, andA. E.Lokshin, “Drug-Selected Human Lung Cancer Stem Cells: Cytokine Network, Tumorigenic and Metastatic Properties,” PLoS One, vol. 3, no. 8, p. e3077, Aug.2008.
[15] Y.Suzuki, N.Haraguchi, H.Takahashi, M.Uemura, J.Nishimura, T.Hata, I.Takemasa, T.Mizushima, H.Ishii, Y.Doki, M.Mori, andH.Yamamoto, “SSEA-3 as a novel amplifying cancer cell surface marker in colorectal cancers.,” Int. J. Oncol., vol. 42, no. 1, pp. 161–7, Jan.2013.
[16] Y.-Y.Liu, V.Gupta, G. A.Patwardhan, K.Bhinge, Y.Zhao, J.Bao, H.Mehendale, M. C.Cabot, Y.-T.Li, andS. M.Jazwinski, “Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling.,” Mol. Cancer, vol. 9, no. 1, p. 145, Jun.2010.
[17] A.Seko, F.Kataoka, D.Aoki, M.Sakamoto, T.Nakamura, M.Hatae, S.Yonezawa, andK.Yamashita, “Beta1,3-galactosyltransferases-4/5 are novel tumor markers for gynecological cancers.,” Tumour Biol., vol. 30, no. 1, pp. 43–50, 2009.
[18] H.-H.Kuo, R.-J.Lin, J.-T.Hung, C.-B.Hsieh, T.-H.Hung, F.-Y.Lo, M.-Y.Ho, C.-T.Yeh, Y.-L.Huang, J.Yu, andA. L.Yu, “High expression FUT1 and B3GALT5 is an independent predictor of postoperative recurrence and survival in hepatocellular carcinoma,” Sci. Rep., vol. 7, no. 1, p. 10750, 2017.
[19] X.Kang, N.Wang, C.Pei, L.Sun, R.Sun, J.Chen, andY.Liu, “Glycan-related gene expression signatures in human metastatic hepatocellular carcinoma cells,” Exp. Ther. Med., vol. 3, no. 3, pp. 415–422, 2012.
[20] Z.Guo, J.Jiang, J.Zhang, H.Yang, Y.Zhong, J.Su, R.Yang, L.Li, andB.Xiang, “Side population in hepatocellular carcinoma HCCLM3 cells is enriched with stem-like cancer cells,” Oncol. Lett., pp. 3145–3151, 2016.
[21] K.Nohara, F.Wang, andS.Spiegel, “Glycosphingolipid composition of MDA-MB-231 and MCF-7 human breast cancer cell lines,” Breast Cancer Res. Treat., vol. 48, no. 2, pp. 149–157, Mar.1998.
[22] W. F.Steelant, Y.Kawakami, A.Ito, K.Handa, E. A.Bruyneel, M.Mareel, andS.Hakomori, “Monosialyl-Gb5 organized with cSrc and FAK in GEM of human breast carcinoma MCF-7 cells defines their invasive properties,” FEBS Lett., vol. 531, no. 1, pp. 93–98, 2002.
[23] S.VanSlambrouck andW. F. aSteelant, “Clustering of monosialyl-Gb5 initiates downstream signalling events leading to invasion of MCF-7 breast cancer cells.,” Biochem. J., vol. 401, no. 3, pp. 689–99, 2007.
[24] V.Gupta, K. N.Bhinge, S. B.Hosain, K.Xiong, X.Gu, R.Shi, M.-Y.Ho, K.-H.Khoo, S.-C.Li, Y.-T.Li, S.VAmbudkar, S. M.Jazwinski, andY.-Y.Liu, “Ceramide glycosylation by glucosylceramide synthase selectively maintains the properties of breast cancer stem cells.,” J. Biol. Chem., vol. 287, no. 44, pp. 37195–205, Oct.2012.
[25] Y. Y.Liu, G. A.Patwardhan, K.Bhinge, V.Gupta, X.Gu, andS. M.Jazwinski, “Suppression of glucosylceramide synthase restores p53-dependent apoptosis in mutant p53 cancer cells,” Cancer Res., vol. 71, no. 6, pp. 2276–2285, 2011.
[26] Y.Sonoda, Y.Matsumoto, M.Funakoshi, D.Yamamoto, S. K.Hanks, andT.Kasahara, “Anti-apoptotic role of focal adhesion kinase (FAK): Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60,” J. Biol. Chem., vol. 275, no. 21, pp. 16309–16315, 2000.
[27] L. H.Xu, X.Yang, C. A.Bradham, D. A.Brenner, A. S.Baldwin, R. J.Craven, andW. G.Cance, “The focal adhesion kinase suppresses transformation-associated, anchorage-independent apoptosis in human breast cancer cells. Involvement of death receptor-related signaling pathways.,” J. Biol. Chem., vol. 275, no. 39, pp. 30597–604, Sep.2000.
[28] E.Kurenova, L.Xu, X.Yang, A. S.Baldwin, R. J.Craven, S. K.Hanks, Z.Liu, andW. G.Cance, “Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein.,” Mol. Cell. Biol., vol. 24, no. 10, pp. 4361–71, 2004.
[29] V. M.Golubovskaya, “Targeting FAK in human cancer: from finding to first clinical trials.,” Front. Biosci. (Landmark Ed., vol. 19, pp. 687–706, 2014.
[30] F. J.Sulzmaier, C.Jean, andD. D.Schlaepfer, “FAK in cancer: mechanistic findings and clinical applications.,” Nat. Rev. Cancer, vol. 14, no. 9, pp. 598–610, 2014.
[31] B. Y.Lee, P.Timpson, L. G.Horvath, andR. J.Daly, “FAK signaling in human cancer as a target for therapeutics,” Pharmacol. Ther., vol. 146, pp. 132–149, 2015.
[32] L.VOwens, L.Xu, R. J.Craven, H.Tumors, L.Xu, R. J.Craven, W. G.Cance, A.Dent, T. M.Weiner, L.Kornberg, andE. T.Liu, “Overexpression of the Focal Adhesion Kinase ( p125 FAK ) in Invasive Human Tumors,” Cancer Res., vol. 55, no. 13, pp. 2752–2755, 1995.
[33] R.Madan, M. B.Smolkin, R.Cocker, R.Fayyad, andM. H.Oktay, “Focal adhesion proteins as markers of malignant transformation and prognostic indicators in breast carcinoma,” Hum. Pathol., vol. 37, no. 1, pp. 9–15, 2006.
[34] V. M.Golubovskaya, L.Ylagan, A.Miller, M.Hughes, J.Wilson, D.Wang, E.Brese, W.Bshara, S.Edge, C.Morrison, andW. G.Cance, “High focal adhesion kinase expression in breast carcinoma is associated with lymphovascular invasion and triple-negative phenotype.,” BMC Cancer, vol. 14, no. 1, p. 769, 2014.
[35] V. M.Golubovskaya, M.Zheng, L.Zhang, J.-L.Li, andW. G.Cance, “The direct effect of focal adhesion kinase (FAK), dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis.,” BMC Cancer, vol. 9, no. 1, p. 280, 2009.
[36] J. S.Swaney, H. H.Patel, U.Yokoyama, B. P.Head, D. M.Roth, andP. A.Insel, “Focal adhesions in (myo)fibroblasts scaffold adenylyl cyclase with phosphorylated caveolin.,” J. Biol. Chem., vol. 281, no. 25, pp. 17173–9, Jun.2006.
[37] K. M.Bailey andJ.Liu, “Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase,” J. Biol. Chem., vol. 283, no. 20, pp. 13714–13724, 2008.
[38] H.Yin, T.Liu, Y.Zhang, andB.Yang, “Caveolin proteins: a molecular insight into disease,” Front. Med., vol. 10, no. 4, pp. 1–8, 2016.
[39] B.Joshi, S. S.Strugnell, J. G.Goetz, L. D.Kojic, M. E.Cox, O. L.Griffith, S. K.Chan, S. J.Jones, S. P.Leung, H.Masoudi, S.Leung, S. M.Wiseman, andI. R.Nabi, “Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion,” Cancer Res., vol. 68, no. 20, pp. 8210–8220, 2008.
[40] K.Simons andD.Toomre, “Lipid rafts and signal transduction.,” Nat. Rev. Mol. Cell Biol., vol. 1, no. 1, pp. 31–39, 2000.
[41] Q.Cai, L.Guo, H.Gao, X.-A.Li, andF.Galbiati, “Caveolar Fatty Acids and Acylation of Caveolin-1,” PLoS One, vol. 8, no. 4, p. e60884, Apr.2013.
[42] P.Liu, M.Rudick, andR. G. W.Anderson, “Multiple functions of caveolin-1.,” J. Biol. Chem., vol. 277, no. 44, pp. 41295–8, Nov.2002.
[43] P. G.Frank, M. W.-C.Cheung, S.Pavlides, G.Llaverias, D. S.Park, andM. P.Lisanti, “Caveolin-1 and regulation of cellular cholesterol homeostasis,” AJP Hear. Circ. Physiol., vol. 291, no. 2, pp. H677–H686, Apr.2006.
[44] D.DiVizio, R. M.Adam, J.Kim, R.Kim, F.Sotgia, T.Williams, F.Demichelis, K. R.Solomon, M.Loda, M. A.Rubin, M. P.Lisanti, andM. R.Freeman, “Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase,” Cell Cycle, vol. 7, no. 14, pp. 2257–2267, Jul.2008.
[45] S.Agelaki, M.Spiliotaki, H.Markomanolaki, G.Kallergi, D.Mavroudis, V.Georgoulias, andC.Stournaras, “Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition.,” Cancer Biol. Ther., vol. 8, no. 15, pp. 1470–7, Aug.2009.
[46] M. E.Irwin, N.Bohin, andJ. L.Boerner, “Src family kinases mediate epidermal growth factor receptor signaling from lipid rafts in breast cancer cells,” Cancer Biol. Ther., vol. 12, no. 8, pp. 718–726, 2011.
[47] H.Lee, S. E.Woodman, J. A.Engelman, D.Volonte’, F.Galbiati, H. L.Kaufman, D. M.Lublin, andM. P.Lisanti, “Palmitoylation of Caveolin-1 at a Single Site (Cys-156) Controls Its Coupling to the c-Src Tyrosine Kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14),” J. Biol. Chem., vol. 276, no. 37, pp. 35150–35158, Sep.2001.
[48] H.Lee, D.Volonte?, F.Galbiati, P.Iyengar, D. M.Lublin, D. B.Bregman, M. T.Wilson, R.Campos-Gonzalez Boumediene Bouzahza, R. G.Pestell, P. E.Scherer, M. P.Lisanti, andM. P.Lisanti, “Constitutive and Growth Factor-Regulated Phosphorylation of Caveolin-1 Occurs at the Same Site (Tyr-14) in Vivo: Identification of a c-Src/Cav-1/Grb7 Signaling Cassette,” Mol. Endocrinol., vol. 14, no. 11, pp. 1750–1775, Nov.2000.
[49] V. M.Golubovskaya, “Focal adhesion kinase as a cancer therapy target.,” Anticancer. Agents Med. Chem., vol. 10, no. 10, pp. 735–41, 2010.
[50] A.Richardson andT.Parsons, “A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK.,” Nature, vol. 380, no. 6574, pp. 538–40, Apr.1996.
[51] A. P.Gilmore andL. H.Romer, “Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation.,” Mol. Biol. Cell, vol. 7, no. 8, pp. 1209–24, 1996.
[52] L. H.Xu, X.Yang, R. J.Craven, andW. G.Cance, “The COOH-terminal domain of the focal adhesion kinase induces loss of adhesion and cell death in human tumor cells,” Cell Growth Differ, vol. 9, no. 12, pp. 999–1005, 1998.
[53] M.Luo andJ.-L.Guan, “Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis.,” Cancer Lett., vol. 289, no. 2, pp. 127–39, 2010.
[54] T.Hu, R.Zhou, Y.Zhao, andG.Wu, “Integrin α6/Akt/Erk signaling is essential for human breast cancer resistance to radiotherapy,” Sci. Rep., vol. 6, no. 1, p. 33376, Dec.2016.
[55] G.Mor, F.Kohen, J.Garcia-Velasco, J.Nilsen, W.Brown, J.Song, andF.Naftolin, “Regulation of fas ligand expression in breast cancer cells by estrogen: functional differences between estradiol and tamoxifen.,” J. Steroid Biochem. Mol. Biol., vol. 73, no. 5, pp. 185–94.
[56] Y.Tamagiku, Y.Sonoda, M.Kunisawa, D.Ichikawa, Y.Murakami, E.Aizu-Yokota, andT.Kasahara, “Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis,” Biochem. Biophys. Res. Commun., vol. 323, no. 2, pp. 445–452, 2004.
[57] H.-Y.Kwon, K.-S.Kim, J.-S.Baik, H.-I.Moon, J.-W.Lee, C.-H.Kim, Y.-S.Cho, Y.-K.Jeong, andY.-C.Lee, “Triptolide-Mediated Apoptosis by Suppression of Focal Adhesion Kinase through Extrinsic and Intrinsic Pathways in Human Melanoma Cells.,” Evid. Based. Complement. Alternat. Med., vol. 2013, p. 172548, 2013.
[58] Y.Liu, H.Cui, X.Huang, B.Zhu, S.Guan, andW.Cheng, “MiR-7a is an important mediator in Fas-associated protein with death domain ( FADD ) -regulated expression of focal adhesion kinase ( FAK ),” Oncotarget, vol. 7, no. 32, 2016.
[59] F. G.Gervais, N. A.Thornberry, S. C.Ruffolo, D. W.Nicholson, andS.Roy, “Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide,” J. Biol. Chem., vol. 273, no. 27, pp. 17102–17108, 1998.
[60] B.Levkau, B.Herren, H.Koyama, R.Ross, andE. W.Raines, “Caspase-mediated cleavage of focal adhesion kinase pp125FAK and disassembly of focal adhesions in human endothelial cell apoptosis.,” J. Exp. Med., vol. 187, no. 4, pp. 579–586, 1998.
[61] R.Takahashi, Y.Sonoda, D.Ichikawa, N.Yoshida, A.-Y.Eriko, andK.Tadashi, “Focal adhesion kinase determines the fate of death or survival of cells in response to TNFα in the presence of actinomycin D,” Biochim. Biophys. Acta - Gen. Subj., vol. 1770, no. 4, pp. 518–526, Apr.2007.
[62] C. G.Tepper, S.Jayadev, B.Liu, A.Bielawska, R.Wolff, S.Yonehara, Y. A.Hannun, andM. F. L. B.-95396812Seldin, “Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity,” Proc Natl Acad Sci U S A, vol. 92, no. August, pp. 8443–8447, 1995.
[63] I.Herr, D.Wilhelm, T.Bönler, P.Angel, andK. M.Debatin, “Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis,” EMBO J., vol. 16, no. 20, pp. 6200–6208, 1997.
[64] S.Grimm, B. Z.Stanger, andP.Leder, “RIP and FADD: two ‘death domain’-containing proteins can induce apoptosis by convergent, but dissociable, pathways.,” Proc. Natl. Acad. Sci. U. S. A., vol. 93, no. 20, pp. 10923–7, 1996.
[65] B. Z.Stanger, P.Leder, T. H.Lee, E.Kim, andB.Seed, “RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death,” Cell, vol. 81, no. 4, pp. 513–523, 1995.
[66] D.Zhang, J.Lin, andJ.Han, “Receptor-interacting protein (RIP) kinase family,” Cell. Mol. Immunol., vol. 7, no. 4, pp. 243–249, 2010.
[67] P.Kamarajan, J.Bunek, Y.Lin, G.Nunez, andY. L.Kapila, “Receptor-interacting Protein Shuttles between Cell Death and Survival Signaling Pathways,” Mol. Biol. Cell, vol. 21, no. 3, pp. 481–488, Feb.2010.
[68] L. P.Wen, J. A.Fahrni, S.Troie, J. L.Guan, K.Orth, andG. D.Rosen, “Cleavage of focal adhesion kinase by caspases during apoptosis,” J. Biol. Chem., vol. 272, no. 41, pp. 26056–26061, 1997.
[69] S.Wang andM. D.Basson, “Akt directly regulates focal adhesion kinase through association and serine phosphorylation: implication for pressure-induced colon cancer metastasis,” AJP Cell Physiol., vol. 300, no. 3, pp. C657–C670, Mar.2011.
[70] Z. C.Nwosu, M. P.Ebert, S.Dooley, andC.Meyer, “Caveolin-1 in the regulation of cell metabolism: a cancer perspective,” Mol. Cancer, vol. 15, no. 1, p. 71, 2016.
[71] C.Trimmer, D.Whitaker-Menezes, G.Bonuccelli, J. N.Milliman, K. M.Daumer, A. E.Aplin, R. G.Pestell, F.Sotgia, M. P.Lisanti, andF.Capozza, “CAV1 inhibits metastatic potential in melanomas through suppression of the integrin/Src/FAK signaling pathway,” Cancer Res., vol. 70, no. 19, pp. 7489–7499, 2010.
[72] K.Simons andD.Toomre, “Lipid rafts and signal transduction,” Nat. Rev. Mol. Cell Biol., vol. 1, no. 1, pp. 31–39, Oct.2000.
[73] H.Wajant, “Principles and mechanisms of CD95 activation,” Biol. Chem., vol. 395, no. 12, pp. 1401–16, Jan.2014.
[74] B.Gerber, M.Freund, andT.Reimer, “Recurrent breast cancer: treatment strategies for maintaining and prolonging good quality of life.,” Dtsch. Ärzteblatt Int., vol. 107, no. 6, pp. 85–91, 2010.
[75] B. R. B.Pires, Í. S. S.DEAmorim, L. D. E.Souza, J. A.Rodrigues, andA. L.Mencalha, “Targeting Cellular Signaling Pathways in Breast Cancer Stem Cells and its Implication for Cancer Treatment.,” Anticancer Res., vol. 36, no. 11, pp. 5681–5691, 2016.
[76] H.Shima, A.Yamada, T.Ishikawa, andI.Endo, “Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy?,” Gland Surg., vol. 6, no. 1, pp. 82–88, 2017.
[77] J.Hua, H.Yu, W.Dong, C.Yang, Z.Gao, A.Lei, Y.Sun, S.Pan, Y.Wu, andZ.Dou, “Characterization of mesenchymal stem cells (MSCs) from human fetal lung: Potential differentiation of germ cells,” Tissue Cell, vol. 41, no. 6, pp. 448–455, Dec.2009.
[78] H.Suila, V.Pitkänen, T.Hirvonen, A.Heiskanen, H.Anderson, A.Laitinen, S.Natunen, H.Miller-Podraza, T.Satomaa, J.Natunen, S.Laitinen, andL.Valmu, “Are globoseries glycosphingolipids SSEA-3 and -4 markers for stem cells derived from human umbilical cord blood?,” J. Mol. Cell Biol., vol. 3, no. 2, pp. 99–107, Apr.2011.
[79] H. M.Lightfoot, A.Lark, C. A.Livasy, D. T.Moore, D.Cowan, L.Dressler, R. J.Craven, andW. G.Cance, “Upregulation of focal adhesion kinase (FAK) expression in ductal carcinoma in situ (DCIS) is an early event in breast tumorigenesis.,” Breast Cancer Res. Treat., vol. 88, no. 2, pp. 109–16, Nov.2004.
[80] A. L.Lark, C. A.Livasy, L.Dressler, D. T.Moore, R. C.Millikan, J.Geradts, M.Iacocca, D.Cowan, D.Little, R. J.Craven, andW.Cance, “High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype,” Mod. Pathol., vol. 18, no. 10, pp. 1289–1294, 2005.
[81] E. K.Park, J. P.Mi, S. H.Lee, C. L.Ying, J.Kim, J. S.Lee, W. L.Jung, S. K.Ye, J. W.Park, C. W.Kim, B. K.Park, andY. N.Kim, “Cholesterol depletion induces anoikis-like apoptosis via FAK down-regulation and caveolae internalization,” J. Pathol., vol. 218, no. 3, pp. 337–349, 2009.
[82] J. H.Jeon, S. K.Kim, H. J.Kim, J.Chang, C. M.Ahn, andY. S.Chang, “Lipid raft modulation inhibits NSCLC cell migration through delocalization of the focal adhesion complex,” Lung Cancer, vol. 69, no. 2, pp. 165–171, Aug.2010.
[83] J. G.Goetz, P.Lajoie, S. M.Wiseman, andI. R.Nabi, “Caveolin-1 in tumor progression: The good, the bad and the ugly,” Cancer Metastasis Rev., vol. 27, no. 4, pp. 715–735, 2008.
[84] B.Joshi, S. S.Strugnell, J. G.Goetz, L. D.Kojic, M. E.Cox, O. L.Griffith, S. K.Chan, S. J.Jones, S.-P.Leung, H.Masoudi, S.Leung, S. M.Wiseman, andI. R.Nabi, “Phosphorylated Caveolin-1 Regulates Rho/ROCK-Dependent Focal Adhesion Dynamics and Tumor Cell Migration and Invasion,” Cancer Res., vol. 68, no. 20, pp. 8210–8220, Oct.2008.
[85] H.Yamaguchi, Y.Takeo, S.Yoshida, Z.Kouchi, Y.Nakamura, andK.Fukami, “Lipid Rafts and Caveolin-1 Are Required for Invadopodia Formation and Extracellular Matrix Degradation by Human Breast Cancer Cells,” Cancer Res., vol. 69, no. 22, pp. 8594–8602, Nov.2009.
[86] A.Schlegel andM. P.Lisanti, “A Molecular Dissection of Caveolin-1 Membrane Attachment and Oligomerization,” J. Biol. Chem., vol. 275, no. 28, pp. 21605–21617, Jul.2000.
[87] P. G.Frank, M. W.-C.Cheung, S.Pavlides, G.Llaverias, D. S.Park, andM. P.Lisanti, “Caveolin-1 and regulation of cellular cholesterol homeostasis,” AJP Hear. Circ. Physiol., vol. 291, no. 2, pp. H677–H686, Apr.2006.
[88] Y. C.Li, M. J.Park, S.-K.Ye, C.-W.Kim, andY.-N.Kim, “Elevated Levels of Cholesterol-Rich Lipid Rafts in Cancer Cells Are Correlated with Apoptosis Sensitivity Induced by Cholesterol-Depleting Agents,” Am. J. Pathol., vol. 168, no. 4, pp. 1107–1118, 2006.
[89] D.Ravid, S.Maor, H.Werner, andM.Liscovitch, “Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells.,” Adv. Enzyme Regul., vol. 46, no. 1, pp. 163–75, 2006.
[90] U.Ortegren, M.Karlsson, N.Blazic, M.Blomqvist, F. H.Nystrom, J.Gustavsson, P.Fredman, andP.Stralfors, “Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes,” Eur. J. Biochem., vol. 271, no. 10, pp. 2028–2036, May2004.
[91] J. H.Chidlow andW. C.Sessa, “Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation.,” Cardiovasc. Res., vol. 86, no. 2, pp. 219–25, May2010.
[92] S.Donatello, I. S.Babina, L. D.Hazelwood, A. D. K.Hill, I. R.Nabi, andA. M.Hopkins, “Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration,” Am. J. Pathol., vol. 181, no. 6, pp. 2172–2187, 2012.
[93] N. A.Chatzizacharias, G. P.Kouraklis, andS. E.Theocharis, “Clinical significance of FAK expression in human neoplasia,” Histol. Histopathol., vol. 23, no. 5, pp. 629–650, 2008.
[94] S.Wang andM. D.Basson, “Akt directly regulates focal adhesion kinase through association and serine phosphorylation: implication for pressure-induced colon cancer metastasis,” AJP Cell Physiol., vol. 300, no. 3, pp. C657–C670, Mar.2011.
[95] Q.Liu, J.Qiu, M.Liang, J.Golinski, K.vanLeyen, J. E.Jung, Z.You, E. H.Lo, A.Degterev, andM. J.Whalen, “Akt and mTOR mediate programmed necrosis in neurons.,” Cell Death Dis., vol. 5, no. 2, p. e1084, Feb.2014.
[96] J. G.Goetz, B.Joshi, P.Lajoie, S. S.Strugnell, T.Scudamore, L. D.Kojic, andI. R.Nabi, “Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1.,” J. Cell Biol., vol. 180, no. 6, pp. 1261–75, Mar.2008.
[97] S.Agelaki, M.Spiliotaki, H.Markomanolaki, G.Kallergi, D.Mavroudis, V.Georgoulias, andC.Stournaras, “Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition.,” Cancer Biol. Ther., vol. 8, no. 15, pp. 1470–7, Aug.2009.
[98] J. H.Park andH. J.Han, “Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK.,” Am. J. Physiol. Cell Physiol., vol. 297, no. 4, pp. C935-44, Oct.2009.
[99] J. B. C.Papers, M.Doi, V.Golubovskaya, L.Beviglia, L.Xu, H. S. E.Iii, R.Craven, andW.Cance, “Dual Inhibition of Focal Adhesion Kinase and Epidermal Growth Factor Receptor Pathways Cooperatively Induces Death Receptor- mediated Apoptosis in Human Breast Cancer Cells *,” J. Biol. Chem., vol. 277, no. 41, pp. 38978–38987, 2002.
[100] Q.Jin andF. J.Esteva, “Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer.,” J. Mammary Gland Biol. Neoplasia, vol. 13, no. 4, pp. 485–98, Dec.2008.
[101] A.Kimura, S.Mora, S.Shigematsu, J. E.Pessin, andA. R.Saltiel, “The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1.,” J. Biol. Chem., vol. 277, no. 33, pp. 30153–8, Aug.2002.
[102] K.Podar, Y.-T.Tai, C. E.Cole, T.Hideshima, M.Sattler, A.Hamblin, N.Mitsiades, R. L.Schlossman, F. E.Davies, G. J.Morgan, N. C.Munshi, D.Chauhan, andK. C.Anderson, “Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells.,” J. Biol. Chem., vol. 278, no. 8, pp. 5794–801, Feb.2003.
[103] J.Zhang andS. N.Hochwald, “The role of FAK in tumor metabolism and therapy,” Pharmacol. Ther., vol. 142, no. 2, pp. 154–163, 2014.
[104] S.Andersson, P.D?Arcy, O.Larsson, andB.Sehat, “Focal adhesion kinase (FAK) activates and stabilizes IGF-1 receptor,” Biochem. Biophys. Res. Commun., vol. 387, no. 1, pp. 36–41, Sep.2009.
[105] L.Taliaferro-Smith, E.Oberlick, T.Liu, T.McGlothen, T.Alcaide, R.Tobin, S.Donnelly, R.Commander, E.Kline, G. P.Nagaraju, L.Havel, A.Marcus, R.Nahta, andR.O’Regan, “FAK activation is required for IGF1R-mediated regulation of EMT, migration, and invasion in mesenchymal triple negative breast cancer cells.,” Oncotarget, vol. 6, no. 7, pp. 4757–72, 2015.
[106] J.Li andB. P.Zhou, “Activation of β-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters.,” BMC Cancer, vol. 11, no. 1, p. 49, Feb.2011.
[107] K.Nam, S.Oh, K.Lee, S.Yoo, andI.Shin, “CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells,” Cell. Signal., vol. 27, no. 9, pp. 1882–1894, Sep.2015.
[108] X.Yang, M.Jia, Z.Li, S.Lu, X.Qi, B.Zhao, X.Wang, Y.Rong, J.Shi, Z.Zhang, W.Xu, Y.Gao, S.Zhang, andG.Yu, “Bioinformatics analysis of aggressive behavior of breast cancer via an integrated gene regulatory network.,” J. Cancer Res. Ther., vol. 10, no. 4, pp. 1013–8, 2014.
[109] Y.Liu, V.Gupta, G. A.Patwardhan, K.Bhinge, Y.Zhao, J.Bao, H.Mehendale, M. C.Cabot, Y.Li, andS. M.Jazwinski, “Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and β-catenin signalin,” Mol. Cancer, vol. 9, no. 145, pp. 1–15, 2010.
[110] S.Alam, A.Fedier, R. S.Kohler, andF.Jacob, “Glucosylceramide synthase inhibitors differentially affect expression of glycosphingolipids,” Glycobiology, vol. 25, no. 4, pp. 351–356, 2015.
[111] Megha andE.London, “Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.,” J. Biol. Chem., vol. 279, no. 11, pp. 9997–10004, Mar.2004.
[112] Megha, P.Sawatzki, T.Kolter, R.Bittman, andE.London, “Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).,” Biochim. Biophys. Acta, vol. 1768, no. 9, pp. 2205–12, Sep.2007.