| 研究生: |
張維茗 Chang, Wei-Ming |
|---|---|
| 論文名稱: |
結合混合實境與建築資訊模型於施工作業之空間分析-以組立鋼筋為例 Hybridizing Mixed Reality and BIM in the Spatial Analysis of the Construction Operation - A Case Study of Rebar Installation |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | Building Information Modeling (BIM) 、Mixed Reality (MR) 、rebar installation |
| 外文關鍵詞: | Building Information Modeling (BIM), Mixed Reality (MR), rebar installation |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
處於地震好發帶之建築物為承受地震不易倒塌其結構須擁有足夠的耐震能力,這使得結構鋼筋設計變得複雜。鋼筋承包商在解析圖說會遭遇誤解鋼筋排列方式與其正確位置等影響結構強度之危險。過於複雜之設計不只有讀圖困難,也會影響到施工人員於現場施作發生錯誤,因空間不足產生的鋼筋擺放位置錯誤與組立時鋼筋碰撞問題,此類問題於鋼筋組立過程影響著工程花費、時間與結構之強度。本研究應用建築資訊模型與混合實境協助鋼筋組立之空間分析與規劃。
鋼筋組立過程容易遭遇因圖說複雜導致設計單位未進行空間不足問題之探討,間接影響鋼筋承包商與施工人為於現場組立過程有碰撞與重疊等情況發生。為解析鋼筋平面圖說複雜問題透過建置3D立體模型記錄鋼筋接頭資訊並呈現於模型之中輔助鋼筋承包商識別複雜鋼筋配置與確認設計是否符合施工性。透過建築資訊模型技術,承包商可以於工程開始前模擬鋼筋組立流程,初步解析其空間問題。然而,建築資訊模型模擬過程並沒考慮到現地狀況使得模擬成果與現實環境有所落差,無法如實反映現地將遭遇之空間問題。因此,本研究加入混合實境輔助建築資訊模型感知周遭環境,透過混合實境之環境感知功能結合現地環境狀況與虛擬模型進行更精確施作模擬。
此系統建立於建築資訊模型3D模型之上,其中記錄了鋼筋號數、尺寸、排列方式與接頭形式,透過建築資訊模型能夠先行模擬組立順序與識別碰撞情形。接著將模型轉入Unity中,建立多種功能協助虛擬物件與現實環境進行互動,再寫入混合實境設備之中,使鋼筋綁紮作業員於現地進行順序模擬提早發現空間不足與組立順序之問題。經過上述施作前的空間分析與鋼筋擺放順序規劃,本研究預期使鋼筋組立過程更加有效率與流暢。
Nowadays, the reinforcement concrete structure is the main building type in Taiwan. The correction of rebar arrangement impacts the structure strength. There are several reasons that make the rebar installation incorrect, such as the lack of workers experience, the limitation of working spaces and the misunderstanding of drawings. In order to prevent these factors from causing the failures, it is necessary to develop a system that can provide the spatial information of the on-site structure condition and simulation function.
This research is going to develop a BIM-MR integrated system in the spatial analysis of the construction operation. According to the framework, rebar installation issues could be analyzed and organized into different potential factors. The requirement information is inputted to the BIM model and then imported to the MR devices. There are two main application for this system. One is the space limitation detect and the other is the placing process simulation. Through the developing platform, the function could be imported to the device. After the functions are tested and satisfied the using requirements, the system could be employed to the construction jobsite.
An on-site case study is adopted to validate the effect of the objective system. The results indicate clearly which obstructs that might influence the rebar placing process and what is the correct installation moving step that might reduce the spatial problem.
英文文獻
[1] Abdulaziz M. Jarkas (2012). “Influence of Buildability Factors on Rebar Installation Labor Productivity of Columns.” Journal of Construction Engineering and Management, 138(2), 258-267
[2] American Concrete Institute, Placing Reinforcing Steel. (2005). Retrieved from https://www.concreteconstruction.net/how-to/construction/placing-reinforcing-steel_o
[3] Azuma, R. T. (1997). “A Survey of Augmented Reality.” Teleoperators and Virtual Environments, 6(4), 355-385.
[4] Behzadan, A. H., Dong, S., &Kamat, V. R. (2015). “Augmented reality visualization: A review of civil infrastructure system applications.” Advanced Engineering Informatics, 29(2), 252–267.
[5] Carolyn Schierhorn. (1994). “Designing for constructability.” The Aberdeen Group
[6] Chalhoub, Jad, and Steven K. Ayer. (2018) "Using Mixed Reality for electrical construction design communication." Automation in Construction 86, 1-10.
[7] Cheng Zhang, Tarek Zayed, Wissam Hijazi &Sabah Alkass. (2016). “Quantitative Assessment of Building Constructability Using BIM and 4D Simulation.” Open Journal of Civil Engineering, 9(6), 442-461
[8] Clifford W. Schwinger. (2011). “Tips for Designing Constructable Steel-Framed Buildings.” Modern Steel Construction, 11-14
[9] Circuit Stream Retrieved from https://circuitstream.com/
[10] Conrad Boton, Sylvain Kubicki & Gilles Halin. (2015). “4D/BIM simulation for preconstruction and construction scheduling. Multiple levels of development within a single case study.” Creative Construction Conference
[11] Construction Industry Institute. “Constructability” Retrieved from https://www.construction-institute.org/resources/knowledgebase/best-practices/constructability
[12] Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, Wiley, Hoboken, New Jersey
[13] Federal Information Processing Standards Publications. (1993). Integrated Definition for Function Modeling (IDEF0). Retrieved from http://www.idef.com/wp-content/uploads/2016/02/idef0.pdf
[14] GitHub – Microsoft/MixedRealityToolkit-Unity, (2017), MixedRealityToolkit-Unity Website, https://github.com/Microsoft/MixedRealityToolkit-Unity
[15] Petr Hořejší. (2014). “Augmented Reality System for Virtual Training of Parts Assembly.” Procedia Engineering, 100 (2015), 699 - 706
[16] Institution of Professional Engineers New Zealand. (2018). “Practice Note 13.”
[17] Jan Tulke, Jochen Hanff. (2007). “4D construction sequence planning – new process and data model.” International Conference on Information Technology in Construction, 24, 79-84
[18] Jari A. Puttonen, Arto J. Saari & Matti K. Tauriainen. (2015). “The assessment of constructibility: BIM cases.” ITcon, 20, 51-67
[19] Max Jurascheka, Lennart Bütha, Gerrit Posselta, Christoph Herrmanna. (2018). “Engineering Society International Conference 2017, ME.” Procedia Manufacturing, 23, 153–158
[20] Microsoft Mixed Reality Academy, (2015), Mixed Reality Academy Website, https://developer.microsoft.com/en-us/windows/mixed-reality/academy
[21] Milgram, P. and Colquhoun, H. (1994). “A Taxonomy of Real and Virtual World Display Integration.” IEICE Transactions on Information Systems, E77-D, No.12.
[22] Moritz Quandt, Benjamin Knoke, Christian Gorldt, Michael Freitag, Klaus-Diete Thoben. (2018). “General Requirements for Industrial Augmented Reality Applications.” Procedia CIRP, 72, 1130-1135
[23] Samaneh Zolfagharian. (2016). “A knowledge-based BIM exchange model for constructability assessment of commercial building designs.” Georgia Institute of Technology
[24] Unity Scripting API, (2017), Scripting API Website, https://docs.unity3d.com/2017.4/Documentation/ScriptReference/
[25] Vuforia official website https://developer.vuforia.com/
中文文獻
[1] 謝俊誼(2010)。探討鋼筋工程施工品質管理及常見缺失,中工高雄會刊,第19卷,第1期,第46-57頁
[2] 楊秉蒼(2007)。營建鋼筋損耗控制實務,詹氏出版社
[3] 陳正平(2017)。鋼筋混凝土梁與鋼箱柱間之接頭採鋼托梁轉接模式之探討,技師報
[4] 陳奕信(2013)。房屋結構鋼筋施工綱要與品管-梁之施工與檢查重點
[5] 科技政策研究與資訊中心(2007)。魚骨圖、因果圖與問題解決思考流程。取自http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=3037
[6] 郭可侯。鋼筋衝突-淺談RC 梁柱接頭鋼筋排置衝突與解決方式
[7] 季妍設計研究室。鋼筋彎鉤(2018)。取自http://mypaper.pchome.com.tw/jhc_miramar/post/1376178853
[8] 起厝自己來(2013)。取自https://henglichen.pixnet.net/blog/listall/2
[9] 自建的漫漫長路!鋼筋保護層不足(2010)。https://alexpankimo.pixnet.net/blog/post/260474921
[10] 內政部營建署(2019)。混凝土結構設計規範
[11] 黃士豪(2018)。應用擴增實境及建築資訊模型於維護作業之空間分析-以機電設備為例,碩士論文,國立成功大學土木工程學研究所,台南市