| 研究生: |
陳宥均 Chen, Yu-Chun |
|---|---|
| 論文名稱: |
化學氣相沉積石墨烯與非晶相碳於銅薄膜及基於表面增強拉曼散射之感測器應用 Chemical Vapor Deposition of Graphene and Amorphous Carbon on Copper Thin Films and Sensor Applications Based on Surface Enhanced Raman Scattering |
| 指導教授: |
曾永華
Tzeng, Yon-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 石墨烯 、表面增強拉曼散射 、羅丹明 、銅 |
| 外文關鍵詞: | Graphene, SERS, R6G, Copper |
| 相關次數: | 點閱:60 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯擁有許多優異的特性,如:極高的電子遷移率、優良的導電性、導熱性,尤其是石墨烯為單層碳原子厚度的二維材料,對於環境的敏感度非常的高,且具備可撓性,這將是接下來穿戴式裝置、可撓式透明導電材料、觸控螢幕所需要的特點,石墨烯擁有極大的發展潛力及應用層面,也是許多研究團隊熱中的研究發展熱門材料。
表面增強拉曼散射(Surface Enhanced Raman Scattering, SERS)是一個高靈敏度的微量分子濃度偵測技術,表面增強拉曼散射基板的材料主要是用金(Au)、銀(Ag)與銅(Cu),而利用銅(Cu)來製作基板的成本比金(Au)與銀(Ag)還要低,但銅(Cu)的缺點為容易在空氣中被氧化,所以,在本實驗中我們製備出同時具備可撓性、與環境穩定性高、不易氧化、表面有一層碳薄膜覆蓋的奈米結構銅基板,用來作為量測表面增強拉曼散射的基板,我們利用微波電漿化學氣相沉積法(MPCVD)與熱化學氣相沉積法(Thermal CVD)來製備碳薄膜覆蓋的奈米結構銅基板,在高溫製程中通入甲烷氣體,使得在銅的表面成長一層碳薄膜,可保護底下的銅基板不會被氧化,過程中碳薄膜也會成長在銅與二氧化矽之間的交界面,並使得銅上下表面有奈米級的粗糙度,且在製備後容易將銅膜從基板上撕起,銅膜的厚度約只有1000nm,可用來作為可撓式的基板,並利用羅丹明(Rhodamine 6G, R6G)作為量測表面增強拉曼散射的染劑,當我們利用此有碳薄膜覆蓋的奈米級結構、可撓式銅基板,利用濃度約10-5 M的羅丹明(Rhodamine 6G, R6G)稀釋溶液,將可量測出其拉曼增強因子(Enhancement factor)達到104倍以上。
We report roughened Cu thin films encapsulated by graphene, amorphous and hybrid nanocarbon films as effective and durable surface enhance Raman scattering (SERS) substrates. Thermal chemical vapor deposition (CVD) has been applied to synthesize amorphous carbon, graphene and their hybrids at substrate temperatures between 300℃ and 1000℃ on Cu films RF magnetron sputtered on oxidized silicon substrates with or without additional aluminum oxide coatings. The CVD process at elevated temperatures simultaneously encapsulates a Cu film with nanocarbon films and roughens it to enable effective plasmonic coupling on the surface of the micro- and nano-structured Cu film. SERS enhancement factor higher than 104 for 10-5 M rhodamine 6G (R6G) molecules in water has been demonstrated. Both oxidized silicon substrates with and without aluminum oxide coatings exhibit similar SERS effects. Surface morphologies of Cu films after CVD processing at around 600℃ results in the best SERS enhancement. Thicker Cu films up to 1500nm results in better SERS enhancement than thinner ones. Durability of the nanocarbon encapsulated, Cu film based SERS substrates has been demonstrated by heating in the ambient air up to 200℃ and exposure to acidic and basic chemicals. Amorphous carbon encapsulation synthesized above 600℃withstands oxidation in ambient air well but is vulnerable to chemical etching by acidic and basic solutions. Graphene-like nanocarbon encapsulation synthesized at 1000℃ is withstands both oxidation in the ambient air and chemical etching.
[1] Schwierz, F. Graphene transistors: status, prospects, and problems. Proceedings of the IEEE, 101(7), 1567-1584, 2013.
[2] Iyechika, Y. Application of graphene to high-speed transistors: expectations and challenges. Sci. Technol. Trends, 37, 76-92, 2010.
[3] Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. Graphene based materials: past, present and future. Progress in materials science, 56(8), 1178-1271, 2011.
[4] Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., & Dai, H. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature nanotechnology, 3(9), 538-542, 2008.
[5] Boyd, D. A., Lin, W. H., Hsu, C. C., Teague, M. L., Chen, C. C., Lo, Y. Y., ... & Wu, C. I. Single-step deposition of high-mobility graphene at reduced temperatures. Nature communications, 6, 2015.
[6] Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., & Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 93(11), 113103, 2008.
[7] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314, 2009.
[8] Li, X., Magnuson, C. W., Venugopal, A., An, J., Suk, J. W., Han, B., ... & Fu, L. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano letters, 10(11), 4328-4334, 2010.
[9] Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., ... & Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 9(1), 30-35, 2008.
[10] Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S. E., Sim, S. H., ... & Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano letters, 10(2), 490-493, 2010.
[11] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., ... & Kim, Y. J. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 5(8), 574-578, 2010.
[12] Li, X., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., ... & Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. Journal of the American Chemical Society, 133(9), 2816-2819, 2011.
[13] Wu, T., Zhang, X., Yuan, Q., Xue, J., Lu, G., Liu, Z., ... & Xie, X. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nature materials, 15(1), 43-47, 2016.
[14] Li, X., Cai, W., Jung, I. H., An, J. H., Yang, D., Velamakanni, A., ... & Ruoff, R. S. Synthesis, characterization, and properties of large-area graphene films. ECS Transactions, 19(5), 41-52, 2009.
[15] Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., ... & Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters, 9(12), 4359-4363, 2009.
[16] Suk, J. W., Kitt, A., Magnuson, C. W., Hao, Y., Ahmed, S., An, J., ... & Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS nano, 5(9), 6916-6924, 2011.
[17] de la Rosa, C. J. L., Sun, J., Lindvall, N., Cole, M. T., Nam, Y., Löffler, M., ... & Yurgens, A. Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Applied Physics Letters, 102(2), 022101, 2013.
[18] Wang, D. Y., Huang, I., Ho, P. H., Li, S. S., Yeh, Y. C., Wang, D. W., ... & Liang, C. T. Clean‐Lifting Transfer of Large‐area Residual‐Free Graphene Films. Advanced Materials, 25(32), 4521-4526, 2013.
[19] Ismach, A., Druzgalski, C., Penwell, S., Schwartzberg, A., Zheng, M., Javey, A., ... & Zhang, Y. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano letters, 10(5), 1542-1548, 2010.
[20] Su, C. Y., Lu, A. Y., Wu, C. Y., Li, Y. T., Liu, K. K., Zhang, W., ... & Li, L. J. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano letters, 11(9), 3612-3616, 2011.
[21] Kim, H., Song, I., Park, C., Son, M., Hong, M., Kim, Y., ... & Choi, H. C. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS nano, 7(8), 6575-6582, 2013.
[22] Song, Y., Liu, J., Quan, L., Pan, N., Zhu, H., & Wang, X. Size Dependence of Compressive Strain in Graphene Flakes Directly Grown on SiO2/Si Substrate. The Journal of Physical Chemistry C, 118(23), 12526-12531, 2014.
[23] Yang, C., Zhang, C., Zhang, G., Li, H. M., Ma, R. J., Xu, S. C., ... & Man, B. Y. Low-temperature facile synthesis of graphene and graphene-carbon nanotubes hybrid on dielectric surfaces. Materials Research Express, 1(1), 015607, 2014.
[24] Ni, Z. H., Wang, H. M., Kasim, J., Fan, H. M., Yu, T., Wu, Y. H., ... & Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano letters, 7(9), 2758-2763, 2007.
[25] Blake, P., Hill, E. W., Neto, A. C., Novoselov, K. S., Jiang, D., Yang, R., ... & Geim, A. K. Making graphene visible. Applied Physics Letters, 91(6), 063124, 2007.
[26] Jia, C., Jiang, J., Gan, L., & Guo, X. Direct optical characterization of graphene growth and domains on growth substrates. Scientific reports, 2, 2012.
[27] Paredes, J. I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., & Tascon, J. M. D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 25(10), 5957-5968, 2009.
[28] Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., & Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. Acs Nano, 5(7), 6069-6076, 2011.
[29] Meyer, J. C., Kisielowski, C., Erni, R., Rossell, M. D., Crommie, M. F., & Zettl, A. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano letters, 8(11), 3582-3586, 2008.
[30] Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. Raman spectroscopy in graphene. Physics Reports, 473(5), 51-87, 2009.
[31] Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., ... & Geim, A. K. Raman spectrum of graphene and graphene layers. Physical review letters, 97(18), 187401, 2006.
[32] Sharma, B., Frontiera, R. R., Henry, A. I., Ringe, E., & Van Duyne, R. P. SERS: materials, applications, and the future. Materials today, 15(1), 16-25, 2012.
[33] Shao, Q., Que, R., Shao, M., Cheng, L., & Lee, S. T. Copper Nanoparticles Grafted on a Silicon Wafer and Their Excellent Surface‐Enhanced Raman Scattering. Advanced Functional Materials, 22(10), 2067-2070, 2012.
[34] Li, X., Ren, X., Zhang, Y., Choy, W. C., & Wei, B. An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS. Nanoscale, 7(26), 11291-11299, 2015.
[35] He, X. N., Gao, Y., Mahjouri-Samani, M., Black, P. N., Allen, J., Mitchell, M., ... & Lu, Y. F. Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology, 23(20), 205702, 2012.
[36] Hinnemo, M., Ahlberg, P., Hägglund, C., Ren, W., Cheng, H. M., Zhang, S. L., & Zhang, Z. B. Scalable residue-free graphene for surface-enhanced Raman scattering. Carbon, 98, 567-571, 2016.
[37] Li, Y., Shi, W., Gupta, A., & Chopra, N. Morphological evolution of gold nanoparticles on silicon nanowires and their plasmonics. RSC Advances, 5(61), 49708-49718, 2015.
[38] Goldberg-Oppenheimer, P., Hutter, T., Chen, B., Robertson, J., Hofmann, S., & Mahajan, S. Optimized vertical carbon nanotube forests for multiplex surface-enhanced raman scattering detection. The journal of physical chemistry letters, 3(23), 3486-3492, 2012.
[39] Liu, C. Y., Liang, K. C., Chen, W., Tu, C. H., Liu, C. P., & Tzeng, Y. Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. Optics express, 19(18), 17092-17098, 2011.
[40] Huang, C. W., Lin, H. Y., Huang, C. H., Lo, K. H., Chang, Y. C., Liu, C. Y., ... & Chui, H. C. Fluorescence quenching due to sliver nanoparticles covered by graphene and hydrogen-terminated graphene. Applied Physics Letters, 102(5), 053113, 2013.
[41] Liwei Liu, at al. Bottom-up growth of Ag/a-Si@Ag arrays on silicon as a surface-enhanced Raman scattering substrate with high sensitivity and large-area uniformity. The Royal Society of Chemistry: 19229-19235, 2015.
[42] Hildebrandt, P., & Stockburger, M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. The Journal of Physical Chemistry, 88(24), 5935-5944, 1984.
[43] He, S., Liu, K. K., Su, S., Yan, J., Mao, X., Wang, D., ... & Fan, C. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Analytical chemistry, 84(10), 4622-4627, 2012.