| 研究生: |
王何維 Wang, Ho-wei |
|---|---|
| 論文名稱: |
邊界條件為非線性之板的靜態分析 Static Deflection of a Plate with Nonlinear Elastic Supports |
| 指導教授: |
李森墉
Lee, Sen-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | Shifting Method 、Balance Method 、靜態 、移位函數 、非線性邊界 、板 、Kirchhoff |
| 外文關鍵詞: | deflection, static, nonlinear boundary, plate, Shifting Method, Balance Method |
| 相關次數: | 點閱:145 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要探討古典Kirchhoff 板具有非線性邊界的靜態問題。在
文中使用Balance Method 對原統御方程式與邊界條件做處理,之後則使用Shifting Method 處理非線性邊界,最後我們可以發現對於此類非線性邊界的靜態問題只需利用Shifting Method 就可得出解答,且可是用於強、弱非線性邊界。此外本文也有探討對於不同個數的模態假設之下之結果的精確程度,探討其收斂行為。
This literary has studied static deflection of Kirchhoff plate with
nonlinear elastic boundary conditions. Balance Method is the first step to modify governing equation and boundary condition into single parameter form. Then using Shifting Method solve static plate deflection problem with nonlinear boundary. We assume more than one mode into the equations, and further, discussing the numerical results with one mode assumption.
In the end, these problems with nonlinear boundary condition can be solved by Shifting Method.
[1] O. Civalek, A. Yavas, “Large Deflection Static Analysis of Rectangular Plates On Two Parameter Elastic Foundations,” International Journal of Science & Technology, Vol. 1, No. 1, pp. 43-50, 2006.
[2] O. Civalek, “Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation,” Journal of Sound and Vibration, Vol. 294, pp. 966-980, 2006.
[3] J. H. Huang, T. L. Wu, K. K. Huang, “Nonlinear Static And Dynamic Analysis of Functionally Graded Plates,” International Journal of Applied Mechanics and Engineering, Vol. 11, No. 3, pp. 679-698, 2006.
[4] Y. Nath, S. Kumar, “Chebyshev Series Solution to Nonlinear Boundary Value Problems in Rectangular Domain,” Computer Methods Apply Mechanics and Engineering, Vol. 125, pp. 41-52, 1995.
[5] R. Sircar, “Fundamental Frequency of Vibration of a Rectangular Plate on a Nonlinear Elastic Foundation,” Indian Journal pure apply Mathe, Vol.11, No.2, pp. 252-255, 1980.
[6] S.Lopez, “Geometrically Nonlinear Analysis of Plates and Cylindrical Shells by a Predictor-Corrector Method,” Computer and Structures, Vol. 79, pp. 1405-1414, 2001.
[7] G. Pohit, K. N. Saha, D. Misra, S. Ghosal, “Nonlinear free vibration analysis of square plates with various boundary conditions,” Journal of Sound and Vibration, Vol. 287, pp. 1031-1044, 2005.
[8] M. K. Singha, R. Daripa, “Nonlinear vibration of symmetrically laminated composite skewplates by finite element method,” International Journal of Non-Linear Mechanics, Vol. 42, pp. 1144-1152, 2007.
[9] J. G. Eisley, “Nonlinear vibration of beams and rectangular plates,” Zeitschrift fr Angewandte Mathematik und Physik, Vol. 15, No. 2, pp. 167-175, 2005.
[10] A. Bhimaraddi, “Large amplitude vibrations of imperfect antisymmetric,” Journal of Sound and Vibration, Vol. 162, No. 3, pp. 457-470, 1993.
[11] Y. S. Shin, P. T. Blotter, “Non-linear vibration analysis of arbitrarily laminated thin rectangular plates on elastic founcations,” Journal of Sound and Vibration, Vol. 167, No. 3, pp. 433-459, 1993.
[12] T. Horibe, N. Asano, “Large Deflection Analysis of Rectangular Plates on Two-parameter Elastic Foundation by the Boundary Strip Method,” JSME International Journal, Series A, Vol. 44, No. 4, 2001.
[13] M. Belhaq, A. Karimin “Effect of stiffener on nonlinear characteristic behavior of a rectangular plate: A single mode approach,” Mechanics Research Communications, 2009.
[14] O. Civalek, “Nonlinear analysis of thin rectangular plates on winkler-pasternak elastic foundations by DSC-HDQ,” Applied Mathematical Modelling, Vol. 31, pp. 606-624, 2007.
[15] P. Malekzadeh, “Nonlinear free vibration of tapered Mindlin plates with edges elastically restrained against rotation using DQM,” Thin-Walled Structures, Vol. 46, pp. 11-26, 2008.
[16] S. Y. Lee, S. M. Lin, “Dynamic analysis of nonuniform beams with time-dependent elastic boundary conditions,” ASME J. Applied Mechanics, Vol. 63, pp. 474-478, 1996
[17] S. Y. Lee, W. R. Wang, T. Y. Chen, “A general approach on the mechanical analysis of non-uniform beams with non-homogeneous elastic boundary conditions,” ASME J. Vibration and Acoustics Vol. 120, pp. 164-169, 1998.
[18] S. Y. Lee, Y. H. Kuo, “Exact solutions for the analysis of general elastically restrained non-uniform beams,” ASME Journal of Applied Mechanics, Vol. 59, pp. S205-S212, 1992.
[19] S. M. Lin, “The closed-form solution for the forced vibration of non-uniform plates with distributed time-dependent boundary conditions,” Journal of Sound and Vibration, Vol. 232, No.3, pp. 493-590, 1999.
[20] S. M. Lin, “Exact solutions for the analysis of a non-conservative beam system with general non-homogeneous boundary conditions,” Journal of Sound and Vibration, Vol. 206, No. 3, pp. 425-434, 1997.
[21] S. Y. Lee, S. M. Lin, “Levy-Type solutionfor the analysis of nonuniform plates,” Computers & Structures, Vol. 49, No. 6, pp. 931-939, 1993.