| 研究生: |
陳彥宏 Chen, Yen-Hung |
|---|---|
| 論文名稱: |
利用計算流體力學方法進行自主式水下無人載具之流體動力分析 Hydrodynamic Analysis of the Autonomous Underwater Vehicle by Implementing Computational Fluid Dynamics Method |
| 指導教授: |
林宇銜
Lin, Yu-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 自主式無人水下載具 、計算流體力學 、斜航試驗 |
| 外文關鍵詞: | AUV, CFD, Oblique Towing Test |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的為探討本實驗室自行開發的自主式無人水下載具(Autonomous Underwater Vehicles, AUV),經由計算流體力學(Computer Fluid Dynamics, CFD)的方法來探討AUV在全附屬物(Bare Hull with Full Appendages)下流場中的情況。數值模擬的紊流模型採用SST k-ω 模型(Shear Stress Transport K-ω model)作為本次的紊流模型,並採用SIMPLEC (Semi-Implicit Method for Pressure-Linked Equations Consistent) 為求解器之設置條件,並參考DAPA SUBOFF的實驗規劃進行斜航試驗(Oblique Towing Test)。分別進行多種入流角(β)、俯仰角(α)的模擬,分析AUV所承受的受力、力矩變化,同時觀察AUV在不同入流角、俯仰角下的流場差異性、壓力分佈、流場變化、壓力係數和摩擦係數分佈。
The purpose of the study was to analyze Autonomous Underwater Vehicle (AUV) by using Computational Fluid Dynamics (CFD) to export the AUV in the full appendage in the flow field. The numerical simulation of the turbulence model uses the SST k-ω model (Shear Stress Transport K-ω model) as the current turbulence model and SIMPLEC (Semi-Implicit Method for Pressure-Linked Equations Consistent) as the setting condition for the solver, and refers to DAPA SUBOFF's experimental plan for the Oblique Towing Test. Simulations of various inflow angles (β) and pitch angles (α) were conducted to analyze the changes in the forces and moments that the AUV is subjected to. Simultaneously, the flow field difference, pressure distribution, flow field variation, pressure coefficient, and friction coefficient distribution of the AUV under different inflow angles and pitch angles were observed.
1. Davidson, K.S. and L.I.J.T.o.S. Schiff, Turning and course keeping qualities. 1946. 54: p. 189-190.
2. Renilson, M., Submarine hydrodynamics. 2015: Springer.
3. 江宜澤, 應用計算流體力學方法探討船舶流體動力係數及操縱性能之研究. 2015: p. 1-93.
4. Huang, T.T., H.-L. Liu, and N.C.J.N.S.W.C. Groves, Carderock Division, Bethesda, MD, Experiments of the DARPA SUBOFF Program. 1989.
5. Roddy, R.F., Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC Model 5470) from captive-model experiments. 1990, David Taylor Research Center Bethesda MD Ship Hydromechanics Dept.
6. Jones, R.J.P.T.o.t.R.S.o.L.S.A., Containing Papers of a Mathematical or Physical Character, VI. The distribution of normal pressures on a prolate spheroid. 1927. 226(636-646): p. 231-266.
7. Zhang, J., et al., Simulation of the flow over axisymmetric submarine hulls in steady turning. 2013. 57: p. 180-196.
8. Watt, G., et al., Wind tunnel investigations of submarine hydrodynamics. The development of the DREA static test rig and some results. 1993. 39(3): p. 119-126.
9. Van Randwijck, E.F. and J.P. Feldman, Results of Experiments with a Segmented Model to Investigate the Distribution of the Hydrodynamic Forces and Moments on a Streamlined Body of Revolution at an Angle of Attack or with a Pitching Angular Velocity. 2000, NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD HYDROMECHANICS ….
10. Gregory, P., Flow over a body of revolution in a steady turn. 2006.
11. Phillips, A., M. Furlong, and S.R. Turnock, The use of computational fluid dynamics to determine the dynamic stability of an autonomous underwater vehicle. 2007.
12. Gorski, J.J., Marine vortices and their computation. 2003, NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD.
13. Zeng, G.-h. and J. Zhu. Study on Key Techniques of Submarine Maneuvering Hydrodynamics Prediction using Numerical Method. in 2010 Second International Conference on Computer Modeling and Simulation. 2010. IEEE.
14. Tang, S., et al., Estimation of the hydrodynamic coefficients of the complex-shaped autonomous underwater vehicle TUNA-SAND. 2009. 14(3): p. 373-386.
15. Dantas, J.L.D. and E.J.A.O.R. De Barros, Numerical analysis of control surface effects on AUV manoeuvrability. 2013. 42: p. 168-181.
16. Karim, M., M. Rahman, and M. Alim, Computation of turbulent viscous flow around submarine hull using unstructured grid. J. Ship Technol, 2009. 5(1): p. 973-1423.
17. Myring, D.J.T.A.Q., A theoretical study of body drag in subcritical axisymmetric flow. 1976. 27(3): p. 186-194.
18. Feldman, J., Dtnsrdc revised standarrd submarine equations of motion. 1979, DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA MD SHIP ….
19. 曹翔皓, 潛體阻力之三維數值模擬與紊流流場特性之分析. 2019: p. 1-113.
20. Yakhot, V. and S.A.J.J.o.s.c. Orszag, Renormalization group analysis of turbulence. I. Basic theory. 1986. 1(1): p. 3-51.
21. Menter, F.R.J.A.j., Two-equation eddy-viscosity turbulence models for engineering applications. 1994. 32(8): p. 1598-1605.
22. Versteeg, H.K. and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method. 2007: Pearson education.
23. Fluent, A., 13.0 User's Guide, (2010). Ansys Inc, 2010.
24. Schlichting, H. and K. Gersten, Boundary-layer theory. 2016: Springer.
25. atankar, S.V. and D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, in Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion. 1983, Elsevier. p. 54-73.
26. 余健明, 應用計算流體力學方法探討潛體流體動力係數及操縱性能之研究. 2016: p. 1-126.
27. Moonesun, M., et al., Concepts in submarine shape design. 2016.
28. Burcher, R. and L.J. Rydill, Concepts in submarine design. Vol. 2. 1995: Cambridge university press.
29. Roache, P.J.J.J.o.F.E., Perspective: a method for uniform reporting of grid refinement studies. 1994. 116(3): p. 405-413.
校內:2021-09-01公開