簡易檢索 / 詳目顯示

研究生: 溫俊耀
Wen, Jun-Yao
論文名稱: 基於暫態響應分析之鋰離子電池老化程度的估算
Estimation of the State of Health of Li-ion Batteries Based on Transient Response Analysis
指導教授: 李建興
Lee, Chien-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 暫態響應鋰離子電池老化程度估算
外文關鍵詞: transient response, lithium-ion batteries, aging-level estimation
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出在短時間內估測電池老化狀態的方法,且不需使用內電阻量測儀器,其乃利用電池於放電時的負載變化,再由暫態響應時間快速得知電池老化狀態,可節省大量量測成本與時間。為模擬不同狀態之電池老化情形,吾人須先建立電池老化狀態等效電路模型,用以分析其在負載變化時的暫態響應時間,進而推估電池老化的程度。而電池老化模擬所使用之參數乃是以文獻中所量測之電池阻抗譜與不同充放循環之阻抗值,用以獲得電池脈衝放電曲線,並以模擬與估測兩種方法來觀測電池阻抗與老化暫態時間的關係,較現有老化估測方法所需時間較短且不需使用昂貴的儀器。另一方面也可以估計電池之充放循環次數,做為電池管理系統的參考指標之一。

    This thesis proposes a method to estimate the SOH of batteries by determining the transient response time under load changes with discharging conditions. The proposed method can estimate the SOH of batteries over a short period of time without measuring the internal resistance, resulting in knowing the status of SOH of a battery early and saving money. To simulate the SOH of a battery under different conditions, an equivalent circuit model is first established to analyze the transient response time during load changes and the SOH of a battery can then be estimated by the transient response time. In addition, the governing equations of SOH of a battery are derived by analyzing the transient response time of the impedance and pulse discharge curve of the battery. However, the pulse discharge curve is obtained according to the measured values of a battery impedance spectroscopy and battery impedances at different charge-discharge cycles in the published literature. This thesis uses two methods to analyze the stability time, which can estimate the SOH of battery over short period of time without expensive equipment.

    摘 要 i Extended Abstract ii 致謝 viii 目錄 ix 圖目錄 xii 表目錄 xv 符號說明 xvi 第一章 緒 論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 本論文之貢獻 10 1.4 本論文之架構 11 第二章 鋰離子電池與交流阻抗譜之介紹 12 2.1鋰電池老化因素 12 2.2 交流阻抗分析原理 13 2.3電化學系統交流阻抗分析之等效電路擬合元件性質 18 2.3.1 電解液與電極之串聯電阻 19 2.3.2 電荷轉移阻抗 19 2.3.3 電雙層電容 20 2.3.4 質傳阻抗 24 2.3.5粗糙電極表面對交流阻抗圖譜的影響 27 第三章 鋰離子電池等效模型之建立 28 3.1 電池等效電路 28 3.1.1 理想模型 28 3.1.2 線性模型 29 3.1.3 戴維寧等效模型 30 3.1.4 Pspice巨觀模型 31 3.1.5 精確電池等效模型 32 3.2 本論文鋰電池等效電路架構 35 3.2.1 電池之開路電壓 35 3.2.2 模型等效阻抗 38 3.3老化模型之實驗阻抗 39 3.4 老化模型之實驗阻抗參數 43 3.5 電池暫態響應 44 第四章 鋰離子電池老化之等效模型實驗模擬 48 4.1電池老化之模擬分析 48 4.2電池老化之估測法分析 58 4.3電池老化之模擬與估測比較 60 4.4本章結論 65 第五章 結論與未來展望 66 5.1結論 66 5.2未來展望 67 參考文獻 68

    [1] 孫建中、周崇仁、劉秋昱、凌守弘,車用電池模組技術與下世代電池管理系統之發展趨勢,291期,工業材料,2011年。
    [2] B. Pattipati, K. Pattipati, J. P. Christopherson, S. M. Namburu, D. V. Prokhorov, and L. Qiao, “Automotive battery management system,” IEEE Autotestcon Proceedings, pp. 581-586, Sep. 2008.
    [3] 洪裕桓,智慧型鋰電池管理系統之研製,國立中山大學電機工程系碩士論文,2005年6月。
    [4] 賴世榮,智慧型鋰離子電池殘存電量估測之研究,國立中山大學電機工程系碩士論文,2004年10月。
    [5] C. Chen, J. Jin, and L. He, “A new battery management system for Li-ion battery packs,” IEEE Asia Pacific Conference on Circuits and Systems, pp. 1312-1315, Dec 2008.
    [6] 陳鵬倫,電池老化檢視裝置市場趨勢與專利分析報告(CB-01-0069),財團法人車輛研究測試中心技術報告,2012年。
    [7] U. Troltzsch, O. Kanoun, and H. -R. Trankler, “Characterizing aging effects of lithium ion batteries by impedance spectroscopy,” Electrochimica. Acta, pp. 1664-1672, Jan. 2006.
    [8] M. Broussely, Ph.Biensan, F. Bonhomme, Ph. Blanchard, S. Herreyre, K. Nechev, and R. J. Staniewicz, “Main aging mechanisms in Li-ion batteries,” Journal of Power Sources, pp. 90-96, Aug. 2005.
    [9] K. Takeno, M. Ichimura, K. Takano, J. Yamaki, and S. Okada, “Quick testing of batteries in lithium-ion battery packs withimpedance-measuring technology,” Journal of Power Sources, pp. 67-75, Mar. 2004.
    [10] W. Xu, K. S. Siow, Z. Gao, and S. Y. Lee, “A.C. impedance study on the interface of lithium and polymer electrolyte based onlithium-N (4-sulfophenyl) maleimide”, Solid State Ionics, pp. 1-8, Sep. 1998.
    [11] J. Zhou, “Lithium metal microreference electrodes and their applications to Li-ion batteries,” Eindhoven: Technische Universiteit Eindhoven, Apr. 2007.
    [12] D. Andrea, M. Meilera, K. Steinera, H. Walza, T. Soczka-Gutha, and D. U. Sauerb,“Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling, ” Journal of Power Sources, pp. 5349-5356, Jun. 2011.
    [13] 程子萍,金屬材料鈍化現象之交流阻抗研究,國立成功大學礦冶及材料科學研究所,博士論文,1990年。
    [14] 鐘瀚揚,球磨與鋁鎳添加對LiMn2O4電導及電化學機構之探討,國立成功大學材料工程研究所,碩士論文,2005年7月。
    [15] 游文雄,鋰離子電池混合金屬氧化物陰極材料之電化學特性分析,國立中央大學化學工程系,碩士論文,2000年6月。
    [16] 吳浩青、李永舫,電化學動力學,科技圖書股份有限公司,2001年2月。
    [17] 林世和,鎳/儲氫合金電池中鎳極化程序之探討與最佳化,東海大學化工研究所,碩士論文,1997年.
    [18] 程子萍,金屬材料鈍化現象之交流阻抗研究,國立成功大學礦冶及材料科學研究所,博士論文,1990年.
    [19] P. Ramadass, B. Haran, R. White, and B. N. Popov, “Mathematical modeling of the capacity fade of Li-ion cells,” Journal of Power Sources, vol. 123, pp. 230-240, 2003.
    [20] B. Schweighofer, K. M. Raab, and G. Brasseur, “Modeling of high power automotive batteries by the use of an automated test system,” IEEE Transactions on Instrumentation and Measurement, vol 52, no.4, pp. 1087-1091, Aug. 2003.
    [21] Z. M. Salameh, M. A. Casacca, and W. A. Lynch, “A mathematical model for lead-acid batteries,” IEEE Transactions on Energy Convers., vol. 7, no. 1, pp. 93-98, Mar. 1992.
    [22] S. Gold, “A pspice macro model for lithium-ion batteries,” Battery Conf. Applications and Advances, pp. 215-222, Jan. 1997.
    [23] M. Chen and A. Rinc´on-Mora, “Accurate electrical battery model capable of predicting runtime and I–V performance,” IEEE Transactions on Energy Convers., vol. 21, no. 2, pp. 504-511, Jun. 2006.
    [24] L. Gao, S. Liu and R. A. Dougal, “Dynamic lithium-ion battery model for system simulation,” IEEE Transactions on Components and Packaging Technologies, vol. 25, pp. 495-505, Sep. 2002.
    [25] T. R. Crompton, Battery Reference Book, 3th ed., Newnes, Oxford, 2000.
    [26] B. Kennedy, D. Patterson and S. Camilleri, “Use of lithium-ion batteries in electric vehicles,” Journal of Power Sources, vol. 90, pp. 156-162, Oct. 2000.
    [27] R. Spotnitz, “Simulation of capacity fade in lithium-ion atteries,” Journal of Power Sources, vol. 113, pp. 72-80, 2003.
    [28] 劉峰其,非線性鋰電池之充放電模型,國立中央大學電機工程學系,碩士論文,2010年6月。
    [29] Y. Zhang and C.Y. Wang, “Cycle-life characterization of automotive lithium-ion batteries with LiNiO2 cathode,” Journal of Power Sources, A527, May. 2009.
    [30] 阮彙權,鋰離子電池參數估算方面之研究,國立清華大學電機工程學系,碩士論文,2010年7月。

    無法下載圖示 校內:2021-02-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE