簡易檢索 / 詳目顯示

研究生: 蔡孟佐
Tsai, Meng-Tso
論文名稱: 以光化學氧化法礦化有機氟化物之研究
Study on the Mineralization of Organofluorine by Photochemical Oxidation Methods
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 有機氟化物全氟辛酸光化學氧化礦化
外文關鍵詞: organofluorine, PFOA, photochemical oxidation, mineralization
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾十年來,有機氟化物在各方面皆有廣泛的應用,但同時也有越來越多文獻指出它所造成的汙染危害已達到不可忽視的地步。本研究以二氟乙酸、三氟乙酸、三氟乙醇、三氟丙醇、四氟丙醇、五氟丙醇和全氟辛酸等多種有機氟化物為目標,並以H2O2 / UV和Na2S2O8 / UV兩種光化學氧化法對其進行礦化研究。實驗過程中針對這兩種方法的多項變因進行探討,包括曝氣氣體種類、UV光波長和氧化劑用量等,找出其對各種有機氟化物的最佳礦化條件。
    結果顯示,這兩種氧化法在氧化劑用量相同的情況下,曝氣氣體為空氣時礦化效果優於氮氣;UV光波長254 nm時礦化效果優於UV光波長365 nm。不過在H2O2 / UV系統中,只有二氟乙酸和四氟丙醇可以有效的被礦化,達到90 %以上之礦化率,其他的三氟乙酸、三氟乙醇、三氟丙醇、五氟丙醇和全氟辛酸有機氟化物則無太大效果,礦化率皆不到40 %;而在Na2S2O8 / UV系統中,只要氧化劑充足,對於本研究中所有的有機氟化物皆能達到90 %以上之礦化率,甚至是全氟辛酸也可以,其中二氟乙酸和四氟丙醇更是能在10分鐘內達到100 %的礦化率。
    反應途徑方面,吾人利用IC分析三氟乙醇、三氟丙醇及五氟丙醇礦化反應的中間產物後發現到皆有三氟乙酸的存在;四氟丙醇礦化反應的中間產物則是出現二氟乙酸,依此結果本研究提出以下反應途徑。首先有機氟醇礦化反應會由含-OH官能基的一端開始進行,先脫氟再氧化成有機氟羧酸,然後脫除一個二氧化碳轉為較小的分子,之後重複進行此過程逐步降解直至完全礦化。

    In last decades, organofluorines are widely applied due to human activities. Their bioaccumulation and toxicological properties have caused great concern in environmental issues. This study adopted two photochemical oxidation processes, H2O2 / UV and Na2S2O8 / UV, for the mineralization of the target organofluorines, including difluoroacetic acid (DFA), trifluoroacetic acid (TFA), trifluoroethanol (TFE), 3,3,3-trifluoro-1-propanol, 2,2,3,3-tetrafluoro-1-propanol (TFP), 2,2,3,3,3-pentafluoro-1-propanol (PFP), and perfluoro-octanoic acid (PFOA). Aeration, UV irradiation, and oxidant dosage are the critical parameters to optimize the photochemical experiments.
    The results of photochemical mineralization of TFP indicated that air purging was more efficient than was nitrogen. In addition, UV 254 nm lamp proved to be more effective than UV 365 nm using a specific amount of oxidant. H2O2 / UV system reduced more than 90% TOC of DFA and TFP solutions, but was incapable of mineralizing TFA, TFE, and 3,3,3-trifluoro-1-propanol, PFP and PFOA (TOC removal lower than 40 %). However, high mineralization level for all target organofluorines (TOC removal all above 90%) could be obtained by Na2S2O8 / UV system as a sufficient amount of oxidant was used, most notably DFA and TFP were completely mineralized in 10 min.
    The ion chromatographic analyses revealed that TFA was an intermediate commonly recorded in the mineralization of TFE, 3,3,3-trifluoro-1-propanol, and PFP. Moreover, DFA was found during TFP decomposition. Hence, a general reaction pathway for the photochemical treatment of organofluorines was proposed: the mineralization of perfluoroalkyl compounds is initiated by de-hydroxyl of alcohol groups, and then oxidized into carboxylic acid by freeing fluorine atoms; the fluorinated carboxylic acid would release CO2 by radical attacks, and was hydrolyzed into a smaller fluorinated alcohol again. The loop of pathway took place until all remaining TOC turned into CO2, H2O, and fluoride ions.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的與內容 2 第二章 文獻回顧 3 2-1 有機氟化物介紹 3 2-1-1 有機氟化物 3 2-1-2 全氟化合物 3 2-1-3 全氟辛酸 4 2-2 H2O2 / UV氧化法 5 2-3 Na2S2O8 / UV氧化法 9 2-4 全氟辛酸的處理技術 12 2-4-1 光化學氧化法 12 2-4-2 熱化學氧化法 14 2-4-3 電化學氧化法 15 2-4-4 其他處理法 16 第三章 實驗方法 18 3-1 研究架構 18 3-2 實驗藥品 19 3-3 儀器設備 20 3-4 實驗步驟 23 3-4-1 實驗裝置 23 3-4-2 實驗步驟 24 第四章 結果與討論 25 4-1 H2O2 / UV系統礦化有機氟化物 25 4-1-1 曝氣氣體種類的影響 25 4-1-2 UV光波長的影響 28 4-1-3 H2O2用量的影響 29 4-1-4 H2O2 / UV礦化系統應用擴充 32 4-2 Na2S2O8 / UV系統礦化有機氟化物 34 4-2-1 曝氣氣體種類的影響 34 4-2-2 UV光波長的影響 36 4-2-3 Na2S2O8用量的影響 38 4-2-4 Na2S2O8 / UV礦化系統應用擴充 41 4-3 礦化反應途徑探討 48 4-3-1 IC圖譜分析 48 4-3-2反應途徑推測 57 第五章 結論與建議 60 5-1 結論 60 5-2 建議 62 參考文獻 63 附錄A 69 附錄B 74

    [1] Christopher Lau, Katherine Anitole, Colette Hodes, David Lai, Andrea Pfahles-Hutchens, and Jennifer Seed, “Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings”.TOXICOLOGICAL SCIENCES 99(2), 366–394 (2007).
    [2] W.K. Hagmann, “The Many Roles for Fluorine in Medicinal Chemistry”.Journal of Medicinal Chemistry 51, 4360–4369 (2008).
    [3] L.W.Y. Yeung, Y. Miyake, Y. Wang, S. Taniyasu, N. Yamashita, P.K.S. Lam, “Total fluorine, extractable organic fluorine, perfluorooctane sulfonate and other related fluorochemicals in liver of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from South China”.Environmental Pollution 157, 17–23 (2009).
    [4] J.P. Giesy, K. Kannan, “Perfluorooctanesulfonate and Related Fluorinated Hydrocarbons in Mink and River Otters from the United States”.Environmental Science & Technology 36, 147A (2002).
    [5] Sinclair, E., Mayack, D.T., Roblee, K., Yamashita, N., Kannan, K., “Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State.”.Archives of Environmental Contamination and Toxicology 50, 398–410 (2006).
    [6] Taves, D.R., “Evidence that there are two forms of fluoride in human serum”.Nature 217, 1050 - 1051 (1968).
    [7] K.J. Hansen, L.A. Clemen, M.E. Ellefson, H.O. Johnson, “Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices”.Environmental Science and Technology 35, 766-770 (2001).
    [8] K. Kannan, S. Corsolini, J. Falandysz, G. Fillman, K. Senthil Kumar, B.G., Loganathan, M.A. Mohd, J. Olivero, N. Van Wouwe, J.H. Yamg, K.M. Aldous,, “Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries”.Environmental Science & Technology 38, 4489-4495 (2004).
    [9] L. Tao, K. Kannan, N. Kajiwara, M.M. Costa, G. Fillmann, S. Takahashi, S. Tanabe, “Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and polar skuas from the southern ocean”.Environmental Science & Technology 40, 7642-7648, (2006).
    [10] S. Taniyasu, K. Kannan, M.K. So, A. Gulkowska, E. Sinclair, T. Okazawa, N. Yamashita, “Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota”.Journal of Chromatography A 1093, 89-97 (2005).
    [11] Geary W. Olsen, Jean M. Burris, David J. Ehresman, John W. Froehlich, Andrew M. Seacat, John L. Butenhoff, and Larry R. Zobel, “Half-Life of Serum Elimination of Perfluorooctanesulfonate, Perfluorohexanesulfonate, and Perfluorooctanoate in Retired Fluorochemical Production Workers”.Environ Health Perspect 115(9), 1298–1305 (2007).
    [12] Roberto Andreozzi, Vincenzo Caprio, Amedeo Insola, Raffaele Marotta, “Advanced oxidation processes (AOP) for water purification and recovery”.Catalysis Today 53, 51–59 (1999).
    [13] Sari Vilhunen•MikaSillanpa¨a¨, “Recent developments in photochemical and chemical AOPs in water treatment: a mini-review”.Reviews in Environmental Science and Bio/Technology 9, 323–330 (2010).
    [14] C. Liang, “Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1-Trichloroethane (TCA) in Aqueous Systems and Soil Slurries”.Soil and Sediment Contamination: An International Journal, 12(2), 207 - 228 (2003).
    [15] O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical Processes for Water Treatment”.Chemical Reviews 93, 671-698 (1993).
    [16] J. Saien, Z. Ojaghloo, A.R. Soleymani, M.H. Rasoulifard, “Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate”.Chemical Engineering Journal 167, 172–182 (2011) .
    [17] H. Suty, C. De Traversay, M. Cost, “Applications of advanced oxidation processes: present”.Water Science and Technology Vol 49 No 4, 227–233 (2004).
    [18] Block P, C.W. Klozur, “activated persulfate for site remediation: comparative evaluation of treatment efficacy and implementation costs”.in Proceedings of the Fourth International Conference on Oxidation and Reduction Technologies for In-situ Treatment of Soil and Groundwater (2005).
    [19] TSITONAKI A., “In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review”.Critical Reviews in Environmental Science and Technology 40(1), 55 - 91 (2010).
    [20] Jing-Yun Fang, Chii Shang, “Bromate Formation from Bromide Oxidation by the UV/Persulfate Process”.Environmental Science & Technology 46, 8976 − 8983 (2012).
    [21] Yu-Jen Shih, Yen-Ching Li, Yao-Hui Huang, “Application of UV/persulfate oxidation process for mineralization of 2,2,3,3-tetrafluoro-1-propanol”.Journal of the Taiwan Institute of Chemical Engineers 44, 287 - 290 (2013).
    [22] Yu-Jen Shih, Widha Nirwana Putra, Yao-Hui Huang, Jie-Cheng Tsai, “Mineralization and deflourization of 2,2,3,3-tetrafluoro-1-propanol (TFP) by UV/persulfate oxidation and sequential adsorption”.Chemosphere 89, 1262–1266 (2012).
    [23] Khataee A.R., “Optimization of UV-promoted peroxydisulphate oxidation of C.I. Basic Blue 3 using response surface methodology”.Environmental Technology 31(1), 73 - 86 (2010).
    [24] Huang Y.F., Y.H. Huang, “Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process”.Journal of Hazardous Materials 162(2-3), 1211-1216 (2009).
    [25] Criquet J., N.K.V. Leitner, “Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis”.Chemosphere 77(2), 194-200 (2009).
    [26] Neppolian B. E. Celik, H. Choi, “Photochemical Oxidation of Arsenic(III) to Arsenic(V) using Peroxydisulfate Ions as an Oxidizing Agent”.Environmental Science & Technology 42(16), 6179-6184 (2008).
    [27] Salari D., “The photo-oxidative destruction of C.I. Basic Yellow 2 using UV/S2O82- process in an annular photoreactor”.Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 43(6), 657-663 (2008).
    [28] Yamazaki S. , “Photocatalytic degradation of 4-tert-octylphenol in water and the effect of peroxydisulfate as additives”.Journal of Photochemistry and Photobiology A: Chemistry 199(2-3), 330-335 (2008).
    [29] Wang D., “Decomposition of polycyclic aromatic hydrocarbons in atmospheric aqueous droplets through sulfate anion radicals: An experimental and theoretical study”.Science of The Total Environment 393(1), 64-71 (2008).
    [30] Lau T.K., W. Chu, N.J.D. Graham, “The Aqueous Degradation of Butylated Hydroxyanisole by UV/S2O82-: Study of Reaction Mechanisms via Dimerization and Mineralization”.Environmental Science & Technology 41(2), 613-619 (2006).
    [31] Hori, H., “Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant”.Environmental Science & Technology 39(7), 2383-2388 (2005) .
    [32] Anipsitakis, G.P., D.D. Dionysiou, “Transition metal/UV-based advanced oxidation technologies for water decontamination”.Applied Catalysis B: Environmental 54(3), 155-163 (2004) .
    [33] Lan-Anh Phan Thi, Huu-Tuan Do, Yu-Chi Lee, Shang-Lien Lo, “Photochemical decomposition of perfluorooctanoic acids in aqueous carbonate solution with UV irradiation”.Chemical Engineering Journal 221, 258–263 (2013).
    [34] Heqing Tang, Qingqing Xiang, Min Lei, Jingchun Yan, Lihua Zhu, Jing Zou, “Efficient degradation of perfluorooctanoic acid by UV–Fenton process”.Chemical Engineering Journal 184, 156-162 (2012).
    [35] Xiaoyun Li, Pengyi Zhang, Ling Jin, Tian Shao, Zhenmin Li, Junjie Cao, “Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism”.Environmental Science & Technology 46, 5528 − 5534 (2012).
    [36] Rabindra Raj Giri, Hiroaki Ozaki, Tatsuya Okada, Shogo Taniguchi, Ryohei Takanami, “Factors influencing UV photodecomposition of perfluorooctanoic acid in water”.Chemical Engineering Journal 180, 197-203 (2012).
    [37] Zhenmin Li, Pengyi Zhang, Tian Shao, Xiaoyun Li, “In2O3 nanoporous nanosphere: Ahighly efficient photocatalyst for decomposition of perfluorooctanoic acid”.Applied Catalysis B: Environmental 125, 350-357 (2012).
    [38] Baoxiu Zhao, Mou Lv, Li Zhou, “Photocatalytic degradation of perfluorooctanoic acid with β-Ga2O3 in anoxic aqueous solution”.Journal of Environmental Sciences 24(4), 774–780 (2012).
    [39] Chao Song, Peng Chen, Chunying Wang, Lingyan Zhu, “Photodegradation of perfluorooctanoic acid by synthesized TiO2 –MWCNT composites under 365 nm UV irradiation”.Chemosphere 86, 853–859 (2012).
    [40] Il-Hyoung Cho, “Degradation and reduction of acute toxicity of environmentally persistent perfluorooctanoic acid (PFOA) using VUV photolysis and TiO 2 photocatalysis in acidic and basic aqueous solutions”.Toxicological & Environmental Vol. 93, No. 5, 925–940 (2011).
    [41] Yuan Wang, Pengyi Zhang, “Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid”.Journal of Hazardous Materials 192 1869–1875 (2011).
    [42] Carl Renan Estrellan, Chris Salim, Hirofumi Hinode, “Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide”.Journal of Hazardous Materials 179, 79–83 (2010).
    [43] M.H. Cao, B.B. Wang, H.S. Yu, L.L. Wang, S.H. Yuan, J. Chen, “Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation”.Journal of Hazardous Materials 179, 1143–1146 (2010).
    [44] Sri Chandana Panchangam, Angela Yu-Chen Lin, Khaja Lateef Shaik, Cheng-Fang Lin, “Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium”.Chemosphere 77, 242–248 (2009).
    [45] Yuan Wang, Pengyi Zhang, Gang Pan, Hao Chen, “Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light”.Journal of Hazardous Materials 160, 181–186 (2008).
    [46] Yuan Wang, Peng Yi Zhang, Gang Pan, Hao Chen, “Photochemical degradation of environmentally persistent perfluorooctanoic acid (PFOA) in the presence of Fe(III)”.Chinese Chemical Letters 19, 371–374 (2008).
    [47] Chen Jing, Zhang Peng-yi, LIU Jian, “Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light”.Journal of Environmental Sciences 19, 387–390 (2007).
    [48] Yu-Chi Lee, Shang-Lien Lo, Jeff Kuo, Yi-Ling Lin, “Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40 °C”.Chemical Engineering Journal 198–199, 27–32 (2012).
    [49] Yuchi Lee, Shanglien LO, Jeff KUO, Chinghong HSIEH, “Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH, and chloride ions”.Frontiers of Environmental Science & Engineering 6(1), 17 - 25 (2012).
    [50] C.S. Liu, C.P. Higgins, F. Wang, K. Shih, “Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water”.Separation and Purification Technology 91, 46–51 (2012).
    [51] Hisao Hori, Misako Murayama, Naoko Inoue, Kyoko Ishida, Shuzo Kutsuna, “Efficient mineralization of hydroperfluorocarboxylic acids with persulfate in hot water”.Catalysis Today 151, 131–136 (2010).
    [52] Yu-Chi Lee, Shang-Lien Lo, Pei-Te Chiueh, Yau-Hsuan Liou, Man-Li Chen, “Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation”.WATER RESEARCH 44, 886–892 (2010).
    [53] Yu-Chi Lee, Shang-Lien Lo, Pei-Te Chiueh, Der-Guang Chang, “Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate”.WATER RESEARCH 43, 2811–2816 (2009).
    [54] Hongying Zhao, Junxia Gao, Guohua Zhao, Jiaqi Fan, Yanbin Wang, “Fabrication of novel SnO2-Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency”.Applied Catalysis B: Environmental 136-137, 278–286 (2013).
    [55] Qiongfang Zhuo, Shubo Deng, Bo Yang, Jun Huang, Bin Wang, Tingting Zhang, Gang Yu, “Degradation of perfluorinated compounds on a boron-doped diamond electrode”.Electrochimica Acta 77, 17–22 (2012).
    [56] Hui Lin, Junfeng Niu, Shiyuan Ding, Lilan Zhang, “Electrochemical degradation of perfluorooctanoic acid (PFOA)by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes”.WATER RESEARCH 46, 2281-2289 (2012).
    [57] Junfeng Niu, Hui Lin, Jiale Xu, Hao Wu, and Yangyang Li, “Electrochemical Mineralization of Perfluorocarboxylic Acids (PFCAs) by Ce-Doped Modified Porous Nanocrystalline PbO2 Film Electrode”.Environmental Science & Technology 46, 10191−10198 (2012).
    [58] Qiongfang Zhuo, Shubo Deng, Bo Yang, Jun Huang, Gang Yu, “Efficient Electrochemical Oxidation of Perfluorooctanoate Using Ti/SnO2 -Sb-Bi Anode”.Environmental Science & Technology 45, 2973–2979 (2011).
    [59] Angela Yu-Chen Lin, Sri Chandana Panchangam, Cheng-Yi Chang, P.K. Andy Hong, “Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition”.Journal of Hazardous Materials 243, 272–277 (2012).
    [60] Ying-Chu Chen, Shang-Lien Lo, Jeff Kuo, “Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid”.WATER RESEARCH 45, 4131-4140 (2011).
    [61] Hanshuang Xiao, Baoying Lv, Guohua Zhao, Yujing Wang, Mingfang Li, and Dongming Li, “Hydrothermally Enhanced Electrochemical Oxidation of High Concentration Refractory Perfluorooctanoic Acid”.The Journal of Physical Chemistry A 115, 13836–13841 (2011).
    [62] Gertraud Mark, Man Nien Schuchmann, Heinz-Peter Schuchmann and Clemens von sonntag, “The photolysis of potassium peroxodisulphate inaqueous solution in the presence of tert-butanol: a simple actinometer for 254 nm radiation”.Journal of Photochemistry and Photobiology A: Chemistry 55, 157-168 (1990).
    [63] Berlin, A.A, “Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds”.Kinetics and Catalysis 27, 34-39 (1986).
    [64] Tsuyoshi Ochiai, Yuichi Iizuka, Kazuya Nakata, Taketoshi Murakami, Donald A. Tryk, Akira Fujishima, Yoshihiro Koide, Yuko Morito, “Efficient electrochemical decomposition of perfluorocarboxylic acids by the use of a boron-doped diamond electrode”.Diamond & Related Materials 20, 64–67 (2011).

    下載圖示 校內:2015-07-31公開
    校外:2015-07-31公開
    QR CODE