| 研究生: |
吳志祥 Wu, Jyh-Shyang |
|---|---|
| 論文名稱: |
可拉伸之非均勻曲樑的平面振動 In-Plane Vibration of Extensional Curved Non-uniform Beams |
| 指導教授: |
李森墉
Lee, Sen-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 外文關鍵詞: | extensional, curved non-uniform Timoshenko beam, free vibration |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於非均勻 Timoshenko 曲樑的同平面振動分析中,首先利用漢米頓原理求得三個耦合的微分方程式。進而藉由三個具有物理意義的參數簡化原來三個耦合的微分方程式以便於分析。經由消去軸向位移及橫向位移後,三個耦合的微分方程式非耦合化,而成為一以彎曲旋轉角為因變數的六階微分方程式。軸向位移及橫向位移亦可表示成以彎曲旋轉角為因變數的關係式。如果非均勻曲樑的材料及幾何變化可利用多項式的形式表示,那麼同平面振動非均勻Timoshenko 曲樑的真確解即可獲得。最後再以一些極端的例子來說明推導的正確性,並討論曲樑錐度、及曲樑長度對第一、二自然頻率的影響。
The three coupled governing differential equations for the in-plane vibrations of curved non-uniform Timoshenko beams are derived via the Hamilton’s principle. Three physical parameters are introduced to simplify the analysis. By eliminating all the terms with the axial displacement parameter, then reducing the order of differential operator acting on the flexural displacement parameter, one uncouples the three governing characteristic differential equations with variable coefficients and reduces them into a sixth-order ordinary differential equation with variable coefficients in term of the angle of the rotation due to bending for the first time. The explicit relations between the axial and the flexural displacements and the angle of the rotation due to bending are also revealed. It is shown that if the material and geometric properties of the beam are in arbitrary polynomial forms, then the exact solutions for the in-plane vibrations of the beam can be obtained. Several limiting studies are illustrated. Finally, limiting cases are studied and the influence of the taper ratio and the arc length on the first two natural frequencies of the beams is explored.
Atluri, S.N.; Iura, M.; Vasudevan, S.: A Consistent Theory of Finite Stretches and Finite Rotations, in Space-Curved Beams of Arbitrary Cross Section, Computational Mechanics, vol. 27, pp. 271-281 (2001).
Andreaus, U.; Batra, R.C.; Porfiri, M.: Vibrations of Cracked Euler-Bernoulli Beams using Meshless Local Petrov-Galerkin (MLPG) Method, CMES: Computer Modeling in Engineering & Sciences, vol. 9, no. 2, pp. 111-132 (2005).
Beda, P.B.: On Deformation of an Euler-Bernoulli Beam Under Terminal Force and Couple, CMES: Computer Modeling in Engineering & Sciences, vol. 4, no. 2, pp. 231-238 (2003).
Childamparam, P.; Leissa, A. W.: Vibrations of Planar Curved Beams, Rings and Arches, Applied Mechanics Reviews, vol. 46, no. 9, pp. 467-483 (1993).
Huang, C.H.; and Shih, C.C.: An Inverse Problem in Estimating Simultaneously the Time-Dependent Applied Force and Moment of an Euler-Bernoulli Beam. CMES: Computer Modeling in Engineering & Sciences, vol. 21, no. 3, pp. 239-254 (2007).
Huang, C.S.; Tseng, Y.P.; Lin, C.J.: In-plane transient responses of arch with variable curvature using dynamic stiffness method, ASCE Journal of Engineering Mechanics, vol. 124, pp. 826-835 (1998).
Huang, T.C.: The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions, Transactions of the American Society of Mechanical Engineering Journal of Applied Mechanics, vol. 28, pp. 579–584 (1961).
Irie, T.; Yamada, G.; Takahashi, I.: The steady state out-of-plane response of a Timoshenko curved beam with internal damping, International Journal of Sound and Vibration, vol. 71, no. 1, pp. 145-156 (1980).
Iura, M.; Atluri, S.N.: Dynamic Analysis of Finitely Stretched and Rotated Three-Dimensional Space-Curved Beams, Computer & Structures, vol. 29, no. 5, pp. 875-889 (1988).
Iura, M.; Suetake, Y.; and Atluri, S.N.: Accuracy of Co-rotational Formulation for 3-D Timoshenko's Beam, CMES: Computer Modeling in Engineering & Sciences, vol. 4, no. 2, pp. 249-258 (2003).
Kawakami, M.; Sakiyama, T.; Matsuda, H.; Morita, C.: In-Plane and Out-of-Plane Free Vibrations of Curved Beams with Variable Sections. International Journal of Sound and Vibration, vol. 187, no. 3, pp. 381-401 (1995).
Laura, P.A.A.; Bambill, E.; Filipich, C.P.; Rossi, R.E.: A Note on Free Flexural Vibrations of a Non-Uniform Elliptical Ring in its Plane. International Journal of Sound and Vibration, vol. 126, no. 2, pp. 249-254 (1988).
Lecoanet, H.; Piranda, J.: In plane Vibrations of Circular Rings with a Radically Variable Thickness, ASME Journal of Vibration Acoustics Stress Reliability Design, vol. 105, no. 1, pp. 137-143 (1983).
Lee, L.S.S.: Vibrations of an Intermediately Supported U-Bend Tube, ASME: Journal of Engineering for Industry, vol. 97, pp. 23–32 (1975).
Lee, S.Y.; Lin, S.M.: Vibrations of Elastically Restrained Non-uniform Timoshenko Beams, ASME: Journal of Sound and Vibration, vol. 183, no.3, pp. 403–415 (1995).
Lee, S.Y.; Lin, S.M.: Dynamic analysis of nonuniform beams with time-dependent elastic boundary conditions, ASME Journal of Applied Mechanics, vol. 63, no. 2, pp. 474-478 (1996).
Lee, S.Y.; Chao, J.C.: On the in-plane vibrations of nonuniform circular beams, AIAA Journal, vol. 39, no. 3, pp. 542-546 (2000a).
Lee, S.Y.; Chao, J.C.: Out-of Plane Vibrations of Curved Non-uniform Beams of Constant Radius, International Journal of Sound and Vibration, vol. 238, no. 3, pp. 443-458 (2000b).
Lee, S.Y.; Chao, J.C.: Exact Out-of Plane Vibrations for Curved Non-uniform Beams, ASME Journal of Applied Mechanics, vol. 68, no. 2, pp. 186-191 (2001).
Lee, S.Y.; Lin, S.M.: Closed-form solutions for dynamic analysis of extensional circular Timoshenko beams with general elastic boundary conditions, International Journal of Solids and Structures, vol. 38, no. 2, pp. 227-240 (2001).
Lee, S.Y.; Hsu, J.J.: Free vibrations of an inclined rotating beam, ASME Journal of Applied Mechanics, vol. 74, no. 3, pp. 406-414 (2007).
Lee, S.Y.; Hsu, J.J.; Lin, S.M.: In-plane vibration of a rotating curved beam with an elastically restrained root, International Journal of Sound and Vibration, vol. 315, pp. 1086-1102 (2008).
Lee, S.Y.; Lin, S.M.; Lee, C.S.; Lu, S.Y.; Liu, Y.T.: Exact Large Deflection Solutions of Beams with Nonlinear Boundary Conditions, CMES: Computer Modeling in Engineering & Sciences, vol. 30, no. 1, pp. 27-36 (2008).
Lee, S.Y.; Lu, S.Y.; Liu, Y.T.; Huang, H.C.: Exact Large Deflection Solutions for Timoshenko Beams with Nonlinear Boundary Conditions, CMES: Computer Modeling in Engineering & Sciences, vol. 33, no. 3, pp. 293-312 (2008).
Lin, S.M.; Lee, S.Y.; Lin, Y.S.: Modeling and bending vibration of the blade of a horizontal axis wind power turbine, CMES: Computer Modeling in Engineering & Sciences, vol. 23, no. 3, pp. 175-186 (2008).
Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. 4th ed, Dover, New York (1944).
Meirovitch, L.: Analytical Methods in Vibrations, Macmillan, New York (1967).
Morley, L.S.D.: The Flexural Vibrations of a Cut Thin Ring, Quarterly Journal of Mechanics and Applied Mathematics, vol. 11, pt. 4, pp. 491-497 (1958).
Murthy, V.R.; Nigam, N.C.: Dynamic Characteristics of Stiffened Rings by Transfer Matrix Approach, International Journal of Sound and Vibration, vol. 39, no. 2, pp. 237-245 (1975).
Reissner, E.: On Finite Deformations of Space-Curved Beams, Journal of Applied Mathematics and Physics, vol. 32, pp. 734-744 (1981).
Shin, Y.J.; Kwon, K.M.; Yun, J.H.: Vibration analysis of a circular arch with variable cross-section using differential transformation and generalized differential quadrature, Journal of Sound and Vibration, vol. 309, pp. 9–19 (2008).
Suzuki, K.; Takahashi, S.: In plane Vibrations of Curved Bars with Varying Cross-Section, Bulletin of the Japan Society of Mechanical Engineers, vol. 25, no. 205, pp. 1100-1107 (1982).
Tarnopolskaya, T.; De Hoog, F.; Fletcher, N.H.; Thwaites, S.: Asymptotic Analysis of the Free In-Plane Vibrations of Beams with Arbitrarily Varying Curvature and Cross-Section, International Journal of Sound and Vibration, vol. 196, no. 5, pp. 659–680 (1996).
Tufekci, E.; Arpaci, A.: Exact solution of in-plane vibrations of circular curved arches with account taken of axial extension, transverse shear and rotary inertia effects, Journal of Sound and Vibration, vol. 209, pp. 845–856 (1998).
Vinod, K.G.; Gopalakrishnan, S.; R. Ganguli.: Wave Propagation Characteristics of Rotating Uniform Euler-Bernoulli Beams, CMES: Computer Modeling in Engineering & Sciences, vol. 16, no. 3, pp. 197-208 (2006).
Wang, T.M.; Issa, M.S.: Extensional vibrations of continuous circular curved beams with rotary inertia and shear deformation, II: forced vibration, International Journal of Sound and Vibration, vol. 114, no. 2, pp. 309-323 (1987).
Wolf, J.A.: Natural frequencies of circular arches, ASCE Journal of Structural Division, vol. 97, pp. 2337-2349 (1971).
Zupan, D.; Saje, M.: A new finite element formulation of three-dimensional beam theory based on interpolation of curvature. CMES: Computer Modeling in Engineering & Sciences, vol. 4, no. 2, pp. 301-318 (2003).
Zupan, D.; Saje, M.: The Linearized Three-Dimensional Beam Theory of Naturally Curved and Twisted Beams: The Strain Vector Formulations, Computer Methods in Applied Mechanics and Engineering, vol. 195, pp. 4557-4578 (2006).