簡易檢索 / 詳目顯示

研究生: 魏敬云
Wei, Ching-yun
論文名稱: 有限採樣法預測CYP3A探針藥物mosapride在大鼠體內之濃度曲線下面積
Limited sampling strategy to predict AUC of CYP3A phenotyping probe mosapride in rats
指導教授: 鄭靜玲
Cheng, Ching-ling
周辰熹
Chou, Chen-hsi
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: mosapride細胞色素3A體內探針性試藥有限採樣法
外文關鍵詞: limited sampling strategy, in vivo probe, Cytochrome P450 3A, mosapride
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 簡介
    細胞色素P450 3A 為目前所有亞型中涉及藥品代謝最重要之代謝酵素,在人體負責許多藥物之代謝。CYP3A的表現與活性在不同個體有很大的差異,且此變異造成個體對藥物反應之不同。利用探針性試藥評估個體之細胞色素P450活性已被廣泛的接受。Mosapride為新一代的腸胃蠕動促進劑,已被證實可作為大白鼠體內肝臟CYP3A活性探針性試藥。然而,口服投予mosapride牽涉腸道與肝臟中CYP3A活性之表現,因此mosapride在此種投藥方式下是否仍可做為CYP3A活性探針,仍待進一步研究。

    研究目的
    本研究主要目的在利用大白鼠動物實驗模式探討,以有限採樣法預測CYP3A探針藥物mosapride在口服投予後大鼠體內之血中濃度曲線下面積。

    研究方法
    控制組實驗中,以口服方式給予10、20、30、40、50 mg/kg的mosapride至大白鼠,並納入一組10 mg/kg mosapride的母鼠實驗以研究其藥物動態。另外,大白鼠事先給予ketoconazole (酵素抑制劑) 進行CYP3A的活性調節後,再投與10 mg/kg 的mosapride。Mosapride的血液檢體採樣收集至480分鐘(高劑量延長收集至720分鐘),以非分室模式估算其藥動參數。肝臟及小腸微粒體中CYP3A2含量表現則是以西方點墨法定量之。

    研究結果
    利用well-stirred model描述mosapride在大白鼠體內之口服清除率與肝臟、小腸微粒體中CYP3A2含量之相關性,兩者呈現高度相關 (r=0.7635,p<0.0001) ,因此mosapride的清除率可代表體內CYP3A的活性;另外,根據控制組與實驗組的數據,發展以有限採樣法 (limited sampling strategy) 的方式並經由確效評估,只要利用少量的血液檢品就可以對mosapride的AUC有準確的預測。

    研究結論
    以口服方式投與mosapride後,只要利用少數時間點的血中濃度就可以對mosapride的AUC有準確的預測,亦即對口服清除率有良好的預測;因此,對於mosapride作為大白鼠體內CYP3A活性碳針性試藥的應用而言,提供一個更方便並節省時間的評估方式。

    Introduction
    Cytochrome P450 3A (CYP3A) is an important subfamily of drug- metabolizing enzymes. In humans, it is responsible for metabolizing numerous drugs across several therapeutic classes. Interindividual variability in the expression and activity of CYP3A is considerable, and may be responsible for variability in drug response. The use of probe substrates is a widely accepted method for evaluating the activity of cytochrome P450 (CYP) enzymes in individuals. Mosapride, a new prokinetic agent, was evaluated as an in vivo probe for measuring hepatic CYP3A activity in rats. However, the metabolism of orally administrated mosapride involves the combination of gastrointestinal and hepatic CYP3A activity. Whether mosapride can be used as a CYP3A probe under such circumstance is of great interest.

    Purpose
    The objective of this study was to evaluate the suitability of limited sampling strategy to predict AUC of CYP3A phenotyping probe mosapride in rats following oral administration.

    Methods
    In control groups, male rats received mosapride(10、20、30、40、50 mg/kg)orally and a female control group (10mg/kg) was also included for studying its pharmacokinetics. And in the CYP3A- modulation group, male rats received 10 mg/kg mosapride after pretreatment with ketoconazole (inhibitor). The plasma concentrations of mosapride were followed for up to 480 or 720 min, and the kinetic parameters were estimated by non-compartment analysis. The contents of CYP 3A2 in hepatic and intestinal microsomes of rats were measured by western blotting analysis.

    Results
    Describing by well-stirred model, the hepatic and intestinal microsomes CYP3A2 contents showed strong correlation with mosapride oral clearance (r=0.7635,p<0.0001). Therefore, mosapride oral clearance can be used to reflect the in vivo CYP3A activity. Based on the data of control and CYP3A modulation group, limited sampling strategies were derived, validated, and evaluated for its applicability. It was demonstrated that the AUC of mosapride can be well predicted by the concentration of few time points.

    Conclusion
    Few time points of plasma concentrations after orally administrated mosapride was needed to precisely predict its AUC and hence clearance in rats. Therefore, this approach represents an effective method for assessing in vivo CYP3A activity.

    摘要 i Abstract iii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 第壹章 緒論 1 第一節 細胞色素(Cytochrome P450) 1 一、 命名 1 二、 分佈及特性 2 三、 個體間活性表現的差異 3 第二節 代謝酵素CYP3A 6 一、 種類 6 二、 藥品交互作用與體內CYP3A探針性試藥 7 第三節 體內CYP3A探針性試藥 7 一、 體內探針性試藥的用途 7 二、 做為理想的探針性試藥準則 8 三、 目前已知的CYP3A體內探針性試藥介紹 9 第四節 Mosapride 簡介 13 一、 物化特性 13 二、 作用機轉 13 三、 藥動特性 14 四、 臨床使用療效 15 五、 藥物交互作用 20 六、 Mosapride作為體內探針性試藥之相關研究 22 第貳章 研究目的 24 第參章 實驗材料、儀器及方法 25 第一節 實驗材料 25 一、 實驗動物 25 二、 藥品與試劑 25 第二節 實驗儀器 27 一、 紫外光/可見光分光光度計 27 二、 高效液相層析系統 27 三、 微粒體製備系統 28 四、 動物實驗手術及檢品處理 29 五、 西方點墨法 30 六、 繪圖及藥動分析軟體 30 第三節 實驗方法 31 一、 藥品配製與定量分析 31 二、 Mosapride在大白鼠之藥物動態試驗 32 三、 大白鼠肝臟與小腸微粒體製備 34 四、 大白鼠肝臟及小腸微粒體之蛋白質含量測定:Lowry method 35 五、 大白鼠肝臟及小腸微粒體之CYP3A2含量測定:西方點墨法 36 六、 實驗設計 42 七、 數據解析 43 第肆章 實驗結果 44 第一節 Mosapride於大白鼠體內的藥品動態 44 一、 口服給予mosapride 44 二、 CYP3A酵素之抑制 49 三、 性別差異試驗 52 第二節 CYP3A2表現量和mosapride藥動學的相關性 55 一、 Lowry法偵測肝臟與小腸微粒體蛋白質含量 55 二、 西方點墨法偵測肝臟與小腸微粒體CYP3A2含量 56 三、 CYP3A2含量和mosapride藥動參數之相關性 61 第三節 有限採樣法的開發 66 一、 單點血中濃度預測mosapride之AUC 66 二、 多點採血點預測mosapride之AUC 72 三、 確效分析 74 第伍章 討論 76 第一節 Mosapride於大白鼠體內的藥品動態 76 一、 控制組 76 二、 抑制組 76 三、 母鼠組 77 第二節 CYP3A2表現量和mosapride藥動學的相關性 77 第三節 有限採樣法的開發 78 第陸章 結論 79

    Anzenbacher P and Anzenbacherova E (2001) Cytochromes P450 and metabolism of xenobiotics. Cellular & Molecular Life Sciences 58:737-747.

    Bachmann KA and Bachmann KA (2002) Genotyping and phenotyping the cytochrome p-450 enzymes. American Journal of Therapeutics 9:309-316.

    Cotreau MM, von Moltke LL, Greenblatt DJ, Cotreau MM, von Moltke LL and Greenblatt DJ (2005) The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clinical Pharmacokinetics 44:33-60.

    Curran MP, Robinson DM, Curran MP and Robinson DM (2008) Mosapride in gastrointestinal disorders. Drugs 68:981-991.

    Dainippon Pharmaceutical Co. L (2004) GasmotinR: mosapride citrate preparation. Prescribing information.

    de Wildt SN, Kearns GL, Leeder JS and van den Anker JN (1999) Cytochrome P450 3A: ontogeny and drug disposition. Clinical Pharmacokinetics 37:485-505.

    Ding X, Kaminsky LS, Ding X and Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annual Review of Pharmacology & Toxicology 43:149-173.

    Frye RF and Frye RF (2004) Probing the world of cytochrome P450 enzymes. Molecular Interventions 4:157-162.
    Fuhr U, Jetter A and Kirchheiner J (2007) Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the "cocktail" approach. Clinical Pharmacology & Therapeutics 81:270-283.

    Guengerich FP (2006) Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS Journal 8:E101-111.

    Kato M (2008) Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metabolism & Pharmacokinetics 23:87-94.

    Katoh T, Saitoh H, Ohno N, Tateno M, Nakamura T, Dendo I, Kobayashi S, Nagasawa K, Katoh T, Saitoh H, Ohno N, Tateno M, Nakamura T, Dendo I, Kobayashi S and Nagasawa K (2003) Drug interaction between mosapride and erythromycin without electrocardiographic changes. Japanese Heart Journal 44:225-234.

    Lee LS, Bertino JS and Nafziger AN (2006) Limited Sampling Models for Oral Midazolam: Midazolam Plasma Concentrations, Not the Ratio of 1-Hydroxymidazolam to Midazolam Plasma Concentrations, Accurately Predicts AUC as a Biomarker of CYP3A Activity. Journal of Clinical Pharmacology 46:229-234.

    Lee QH, Fantel AG and Juchau MR (1991) Human embryonic cytochrome P450S: phenoxazone ethers as probes for expression of functional isoforms during organogenesis. Biochemical Pharmacology 42:2377-2385.

    Lin JH, Chiba M, Chen IW, Nishime JA, deLuna FA, Yamazaki M and Lin YJ (1999) Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450 3A [correction of P-450 A] and p-glycoprotein induction .[erratum appears in Drug Metab Dispos 1999 Nov;27(11):1374]. Drug Metabolism & Disposition 27:1187-1193.

    Lin YS, Lockwood GF, Graham MA, Brian WR, Loi CM, Dobrinska MR, Shen DD, Watkins PB, Wilkinson GR, Kharasch ED and Thummel KE (2001) In-vivo phenotyping for CYP3A by a single-point determination of midazolam plasma concentration. Pharmacogenetics 11:781-791.

    Lowry JA, Kearns GL, Abdel-Rahman SM, Nafziger AN, Khan IS, Kashuba ADM, Schuetz EG, Bertino JS, Jr., van den Anker JN and Leeder JS (2003) Cisapride: a potential model substrate to assess cytochrome P4503A4 activity in vivo.[see comment]. Clinical Pharmacology & Therapeutics 73:209-222.

    Matsumoto S, Yoshida K, Itogawa A, Tagawa M, Fujii T, Miyazaki H and Sekine Y (1993) Metabolism of [carbonyl-14C]mosapride citrate after a single oral administration in rats, dogs and monkeys. Arzneimittel-Forschung 43:1095-1102.

    Meibohm B, Beierle I, Derendorf H, Meibohm B, Beierle I and Derendorf H (2002) How important are gender differences in pharmacokinetics? Clinical Pharmacokinetics 41:329-342.

    Mugford CA and Kedderis GL (1998) Sex-dependent metabolism of xenobiotics. Drug Metabolism Reviews 30:441-498.

    Mushiroda T, Douya R, Takahara E and Nagata O (2000) The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate. Drug Metabolism & Disposition 28:1231-1237.
    Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE and Zeldin DC (2006) The human intestinal cytochrome P450 "pie". Drug Metabolism & Disposition 34:880-886.

    Pearce RE, Gotschall RR, Kearns GL and Leeder JS (2001) Cytochrome P450 Involvement in the biotransformation of cisapride and racemic norcisapride in vitro: differential activity of individual human CYP3A isoforms. Drug Metabolism & Disposition 29:1548-1554.

    Sakashita M, Mizuki Y, Hashizume T, Yamaguchi T, Miyazaki H and Sekine Y (1993a) Pharmacokinetics of the gastrokinetic agent mosapride citrate after intravenous and oral administrations in rats. Arzneimittel-Forschung 43:859-863.

    Sakashita M, Yamaguchi T, Miyazaki H, Sekine Y, Nomiyama T, Tanaka S, Miwa T and Harasawa S (1993b) Pharmacokinetics of the gastrokinetic agent mosapride citrate after single and multiple oral administrations in healthy subjects. Arzneimittel-Forschung 43:867-872.

    Schuetz JD, Kauma S and Guzelian PS (1993) Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. Journal of Clinical Investigation 92:1018-1024.

    Shimada T, Yamazaki H, Mimura M, Wakamiya N, Ueng YF, Guengerich FP and Inui Y (1996) Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metabolism & Disposition 24:515-522.

    Streetman DS, Bertino JS, Jr. and Nafziger AN (2000) Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 10:187-216.

    Thelen K and Dressman JB (2009) Cytochrome P450-mediated metabolism in the human gut wall. Journal of Pharmacy and Pharmacology:541–558.

    Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Hartwell PS, Raisys VA, Marsh CL, McVicar JP, Barr DM and et al. (1994) Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. Journal of Pharmacology & Experimental Therapeutics 271:549-556.

    Ueno N, Inui A, Asakawa A, Takao F, Komatsu Y, Kotani K, Nishimura R and Kasuga M (2002) Mosapride, a 5HT-4 receptor agonist, improves insulin sensitivity and glycaemic control in patients with Type II diabetes mellitus. Diabetologia 45:792-797.

    Wang L and Weinshilboum R (2006) Thiopurine S-methyltransferase pharmacogenetics: insights, challenges and future directions. Oncogene 25:1629-1638.

    Wijnen PA, Op den Buijsch RA, Drent M, Kuipers PM, Neef C, Bast A, Bekers O, Koek GH, Wijnen PAHM, Op den Buijsch RAM and Kuipers PMJC (2007) Review article: The prevalence and clinical relevance of cytochrome P450 polymorphisms. Alimentary Pharmacology & Therapeutics 26 Suppl 2:211-219.

    官玫仙 (2007) Cisapride作為大白鼠體內CYP3A活性探針性試藥之可行性. 國立成功大學臨床藥學所95級碩士論文.

    張雅雯 (2008) Mosapride作為大白鼠體內CYP3A活性探針性試藥之可行性. 國立成功大學臨床藥學所96級碩士論文.

    楊淑珍 (2005) 體外CYP3A活性探針性試藥之開發: Cisapride與Delavirdine. 國立成功大學臨床藥學所93級碩士論文.

    無法下載圖示 校內:2108-07-28公開
    校外:2108-07-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE