簡易檢索 / 詳目顯示

研究生: 羅培倫
Lo, Pei-Lun
論文名稱: 矽鍺雙通道摻雜異質結構場效電晶體之研製
Study of SiGe Double-Doped Channels Heterostructure Field-Effect Transistors
指導教授: 吳三連
Wu, San-Lein
張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 65
中文關鍵詞: 通道摻雜矽鍺
外文關鍵詞: SiGe, Doped-Channel
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們利用固體源分子束磊晶法(SSMBE)設計正型矽鍺雙通道摻雜場效電晶體新異結構,並以二次離子質譜儀進行薄膜品質與摻雜輪廓分析,所開發之元件將與單通道摻雜場效電晶體進行電性比較分析,期進而歸納此結構之最佳設計準則。

      在實驗方面,這兩種矽鍺通道摻雜異質結構場效電晶體皆已成功研製。其中矽鍺雙通道摻雜場效電晶體在元件的特性表現上猶為出色,乃因雙通道結構價電帶改變,使得載子更能有效侷限在矽鍺雙通道中,因此能改善元件的特性。其最高汲極電流為18 mA/mm,而最高互導值可達7.69 mS/mm,並且擁有較大的電導半高寬值。

     In this thesis, results comparing SiGe p-channel MESFET performance of single- and double-doped channel devices, which grown by solid-source molecular beam epitaxy (SSMBE) are presented. Secondary ion mass spectrum (SIMS) was used to confirm the Ge and boron profile in Si1-xGex channel.

     As expected, double-doped channel devices exhibit improved electrical characteristics in this experiment due to the good carrier confinement. It is found that double-doped channels FETs exhibit the better properties not only in current density (18 mA/mm) but also in extrinsic transconductance (7.69 mS/mm). Besides, it has linear operation over a wider dynamic range.

    Contents Abstract (Chinese) I Abstract (English) II Acknowledgements III Contents IV Figure Captions VI Chapter 1 Introduction 1 Chapter 2 SiGe Heterostructures and Doped-Channel Field-Effect Transistors 6 2.1 Properties of Si1-xGex Epitaxial Layer 6 2.2 Bandgap of SiGe/Si Heterostructure 7 2.3 Band alignment of SiGe/Si Heterostructure 8 2.4 Transport properties in strained SiGe channels 10 2.5 SiGe doped-channel field-effect transistor 11 Chapter 3 Fabrication of SiGe Doped-Channel Heterostructure Field-Effect Transistor 14 3.1 Epitaxial growth of SiGe doped-channel heterostructures 14 MBE system description 14 Epitaxial growth 16 3.2 Mesa isolation 17 3.3 Source and drain metallization 17 Pattern definition 18 Metal evaporation 18 Metal lift-off 18 Sintering 18 3.4 Gate metallization 19 Pattern definition 19 Metal evaporation 19 Metal lift-off 20 Chapter 4 Characteristics of p-type SiGe MESFETs with Different Doped-Channel 21 4.1 Schottky diode characteristics 21 4.2 Three-terminal current-voltage characteristics 23 SiGe single-doped channel field-effect transistor (SDCFET) 23 SiGe double-doped channel field-effect transistor (DDCFET) 24 4.3 The comparison of SiGe SDCFET and DDCFET 25 Chapter 5 Conclusion and Future Works 28 5.1 Conclusion 28 5.2 Future works 29 RF and noise performance 29 Change Ge ratios 29 SiGe MOSFETs 30 Figure Captions 31 Reference 59

    [1] D. L. Harame, J. H. Comfort, J. D. Cressler, and E. F. Crabbe, “Si/SiGe epitaxial-base transistor-part I: materials, physics, and circuits,” IEEE Transactions On Electron Devices, pp. 455, 1995.
    [2] J. Fu, and K. Bach, “A simple electrical approach to extracting the difference in bandgap across neutral base for SiGe HBTs,” Materials Science in Semiconductor Processing 8, pp. 301-306, 2005.
    [3] J. Bock, H. Schafer, H. Knapp, D. Zoschg, K. Aufinger, M. Wurzer, S. Boguth, M. Rest, R. Schreiter, R. Stengl, and T. Meister,“Sub 5 ps SiGe Bipolar Technology,” in: IEDM Tech. Dig., pp. 763-766, 2002.
    [4] V. Palankovski, and S. Selberherr, “The state-of-the-art in simulation for optimization of SiGe-HBTs,” Applied Surface Science 224, pp. 312-319, 2004.
    [5] P. W. Li, W. M. Liao, C. C. Shih, T. S. Kuo, L. S. Lai, Y. T. Tseng, and M. J. Tsai, “Effect of substrate biasing on Si/SiGe heterostruture MOSFETs for low-power circuit applications,” IEEE Electron Device Letters, vol. 24, no. 7, 2003.
    [6] P. W. Li and W. M. Liao, “Analysis of Si/SiGe channel pMOSFETs for deep-submicron scaling,” Solid-State Electron, vol. 46, pp. 39-44, 2002.
    [7] M. H. Cho, D. H. Ko, Y. G. Choi, K. Jeong, I. W. Lyo, D. Y. Noh, H. J. Kim, and C. N. Whang, “Structural and electrical characteristics of Y2O3 films grown on oxidized Si(100) surface,” J. Vac. Sci. Tech. A, pp. 192-199, 2001.
    [8] J. H. Lee, K. Koh, N. I. Lee, M. H. Cho, Y. K. Kim, J. S. Jeon, K. H. Cho, H. S. Shin, M. H. Kim, K. Fujihara, H. K. Kang, and J. T. Moon, “Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al2O3 gate dielectric,” Tech. Dig. Int. Electron Device Meet, pp. 645-648, 2000.
    [9] R. Mahapatra, J. H. Lee, S. Maikap, G. S. Kar, A. Dhar, M. Nong, D. Y. Hwang, Y. D. Kim, B. K. Mathur, and S. K. Ray, “Effects of interfacial nitrogen on the structural and electrical properties of ultrathin ZrO2 gate dielectrics on partially strained-compensated SiGeC/Si heterolayers,” Appl. Phys. Lett., pp. 4331-4333, 2003.
    [10] C. K. Maiti, S. Maikap, S. Chatterjee, S. K. Nandi, and S. K. Samanta, “Minority carrier lifetime and diffusion length in Si1-x-yGexCy heterolayers,” Solid-State Electron, pp. 893-897, 2003.
    [11] E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. Dimaria, S. Guha, A. Callegrai, S. Zafar, P. C. Jamisom, D. A. Neumayer, M. Copel, M. A. Gribelyuk, S. H. Okorn, C. Demic, P. Kozlowski, K. Chan, N. Bojarczuk, L. A. Ragnarsson, P. Ronsheim, K. Rim, R. J. Fleming, A. Mocuta, and A. Ajmera, “Ultrathin high-K gate stacks for advanced CMOS devices,” Tech. Dig. Int. Electron Device Meet, pp. 451, 2001.
    [12] L. Kang, K. Onishi, Y. Jeon, B. H. Lee, C. Kang, W. J. Qi, R. Nieh, S. Gopalan, R. Choi, and J. C. Lee, “Characteristics of TaN gate MOSFET with ultrathin hafnium oxide,” Tech. Dig. Int. Electron Device Meet, pp. 39-42, 2000.
    [13] S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “High quality ultrathin CVD HfO2 gate with poly-Si gate electrode,” Tech. Dig. Int. Electron Device Meet, pp. 31-34, 2000.
    [14] S. Verdonckt, E. F. Carbbe, B. S. Meyerson, D. L. Harame, P. J. Restle, J. M. C. Stork, A. C. Megdanis, C. L. Stanis, A. A. Bright, G. M. W. Kroesen, and A. C. Warren, “High-mobility modulation doped graded SiGe-channel p-MOSFET's,” IEEE Electron Device Letters, pp. 447-449, 2003.
    [15] M. Y. A. Yousif, M. Johansson, P. Lundgren, S. Bengtsson, J. Sundqvist, A. Harsta, and H. H. Radamson, “HfO2 gate dielectrics on strained-Si and strained-SiGe layers,” European solid-state device research, pp. 255-258, 2003.
    [16] M. Shima, T. Ueno, T. Kumise, H. Shido, Y. Sakuma, and S. Nakamura, “<100> channel strained-SiGe p-MOSFET with enhanced hole mobility and lower parasitic resistrance,” VLSI Technology, pp. 94-95, 2002.
    [17] D. K. Nayak, K. Kamjoo, J. C. S. Woo, J. S. Park, and K. L. Wang, “Rapid thermal oxidation of GeSi strained layers,” Appl. Phys. Lett., pp. 66-68, 1990.
    [18] S. J. Kilpatrick, R. J. Jaccodine, and P. E. Thompson, “A diffusional model for the oxidation behavior of Si1-xGex alloys,” J. Appl. Phys., pp. 8018-8028, 1997.
    [19] B. Guillaumot, X. Garros, F. Lime, K. Oshima, B. Tavel, J. A. Chroboczek, P. Masson, R. Truche, A. M. Papon, F. Martin, J. F. Damlencourt, S. Maitrejean, M. Rivoire, C. Leroux, S. Cristoloveanu, G. Ghibaudo, J. L. Autran, T. Skotnicki, and S. Deleonibus, “75 nm damascene metal gate and high-k integration advanced CMOS devices,” Tech. Dig. Int. Electron Device Meet, pp. 355-358, 2002.
    [20] S. Zhonghai, D. Onsongo, K. Onishi, J. C. Lee, and S. K. Banerjee, “Mobility enhancement in surface channel SiGe PMOSFETs with HfO2 gate dielectrics,” IEEE Electron Device Letters, pp. 34-36, 2003.
    [21] T. C. Chen, L. S. Lee, W. Z. Lai, and C. W. Liu, "The characteristic of HfO2 on strained SiGe," Materials Science in Semiconductor Processing 8, pp. 209-213, 2005.
    [22] P. E. Thompson, G. Jernigan, J. Schulze, I. Eisele, and T. Suligoj, "Vertical SiGe-based silicon-on-nothing (SON) technology for sub-30 nm MOS devices," Materials Science in Semiconductor Processing 8, pp. 51-57, 2005.
    [23] S. Verdonckt, E. F. Crabbe, and B. S. Meyerson, “SiGe-Channel Heterojunction p-MOSFET’s,” IEEE Transactions On Electron Devices, vol.41, no.1, 1994.
    [24] T. Mizuno, N. Sugiyama, T. Tezuka, Y. Moriyama, S. Nakaharai, T. Maeda, and S. Takagi, “High-performance (110)-surface strained-SOI MOSFETs,” Materials Science in Semiconductor Processing 8, pp. 327-336, 2005.
    [25] A. Joseph, L. Lanzerotti, X. Liu, D. Sheridan, J. Johnson, Q. Liu, J. Dunn, J. S. Rieh, and D. Harame, “Advanced in SiGe HBT BiCMOS Technology,” 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.
    [26] R. Szweda, “Silicon Germanium Materials & technology to 2006,” Elsevier Advanced Technology Ltd., 2003.
    [27] Prism products, http://www.conexant.com
    [28] C. Viallon, J. Graffettil, and T. Parra, “High performance K-band active mixer using BiCMOS SiGe process,” Electronics Letters 41 (3): pp. 134-135, 2005.
    [29] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “GexSi1-x/Si strained-layer supperlattices growth by molecular beam epitaxy,” J. Vac. Sci. Tech., vol. 53, pp.1586, 1982.
    [30] B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett., Vol.48, pp.797-799, 1986.
    [31] A. T. Vink, P. J. Roksnoer, C. J. Vriezema, L. J. Van Ijzendoorn, and P. C. Zalm, “Sharp boron spikes in silicon grown at reduced and atmospheric pressure by fast-gas-switching CVD,” Jpn. J. Appl. Phys., vol. 29, 1990.
    [32] B. Tillack, D. Kruger, P. Gaworzewski, and G. Ritter, “Atomic layer doping of SiGe by low pressure chemical vapor deposition,” Thin Solid Film, vol. 294, pp. 15-17, 1997.
    [33] T. Hackbarth, Dipl. Ing. Marco Zeuner, and Ulf Konig, “The Future of SiGe,” Compound Semiconductor Net., 2002.
    [34] S. M. Sze, Physics of semiconductor devices (Wiley-Interscience, New York), 1981.
    [35] S. J. Koester, “Extremely high transconductance Ge/Si0.4Ge0.6 p-MODFET’s grown by UHV-CVD,” IEEE Electron Device Letters, vol. 21(3), pp. 110, 2000.
    [36] M. Miyao, E. Murakami, H. Etoh, K. Nakagawa, and A. Nishida, “High hole mobility in strained Ge channel of modulation-doped p-Si0.5Ge0.5/Ge/Si1-xGex heterostructure,” J. Cryst. Growth, vol. 111, pp. 912, 1991.
    [37] Y. H. Xie, “SiGe field effect transistors,” Materials Science and Engineering, 25, pp. 89-121, 1999.
    [38] M. P. Temple, D. J. Paul, Y. T. Tang, and A. M. Waite, “Compressively-strained, buried-channel Si0.7Ge0.3 p-MOSFETs fabricated on SiGe virtual substrates using a 0.25 um CMOS process,” IEEE Electron Device Letters, 2004.
    [39] D. Paul, “Silicon Germanium,” (http:// www. sp.phy.cam.ac.uk /~dp109/SiGe.html), Cavendish Laboratory, University of Cambridge.
    [40] M. A. Herman, “Silicon-Based Heterostructures: Strained-Layer Growth by Molecular Beam Epitaxy,” Crystal Research Technology 34, pp. 5-6, 1999.
    [41] R. People and S. A. Jackson, “Structurally induced states from strain and confinement,” Semiconductor and Semimetals, vol. 32, pp. 119, 1990.
    [42] R. People, “Indirect band gap of coherently strained GexSi1-x bulk alloys on <001> silicon substrates,” Physical Review B, vol. 32, no.2, 1985.
    [43] D. J. Paul, “Silicon-Germanium Strained Layer Materials in Microelectronics,” Advanced Materials, no. 3, 1999.
    [44] J. M. Hinckley, and J. Singh, “Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si (001) substrates,” Physical Review B, vol. 41, nol. 5, pp. 2912-2926, 2001.
    [45] M. Suima, “<100> Strained-SiGe-Channel p-MOSFET with Enhanced Hole Mobility and Lower Parasitic Resistance,” Fujitsu Sci. Tech. J., pp. 78-83, 2003.
    [46] X. Chen, K. C. Liu, and Q. C. Ouyang, S. K. Jayanarayanan, and S. K. Banerjee, “Hole and Electron Mobility Enhancement in Strained SiGe Vertical MOSFETs,” IEEE Transactions On Electron Devices, vol. 48, no. 9, 2001.
    [47] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de Physique, Paris, France, 1992.
    [48] S. K. Chun and K. L. Wang, “Effective mass and mobility of holes in strained SiGe on (001) SiGe substrate,” IEEE Transcations on Electron Devices, 1992.
    [49] A. A. Iliadis, J. K. Zahurak, and S. A. Tabatabaei, “Application Specific Devices: Transport and performance of qusai-MODFET and the graded base heterojunction bipolar transistor,” IEEE invited paper, 1996.
    [50] M. T. Yang and Y. J. Chan, “Device linear comparisons between doped-channel and modulation-doped designs in pseudomorphic Al0.3Ga0.7As/In0.2Ga0.8As heterostructures,” IEEE Electron Device Letters, ED-43 (8), pp. 1174, 1996.
    [51] J. A. D. Alamo, and T. Mizutani, “An In0.52Al0.48As/n+-In0.53Ga0.47As MESFET with a heavily doped channel,” IEEE Electron Device Letters, vol. 8, pp. 534, 1987.
    [52] Y. J. Chan and M. T. Yang, “Device linear improvement by AlGaAs/InAs heterostructure doped-channel FET’s,” IEEE Electron Device Letters, vol. 16, pp. 33-35, 1995.
    [53] W. C. Liu, W. C. Hsu, L. W. Laih, J. H. Tsai and W. S. Lour, “Performance enhancement in a metal-insulator-semiconductor-like pseudomorphic transistor by utilizing an n--GaAs/n+-In0.2Ga0.8As two-layer structure,” Appl. Phys. Lett., 66, pp. 1524-1526, 1995.
    [54] T. E. Whall, and E. H. C. Paker, “Silicon germanium heterostructures – advanced materials and devices for silicon technology,” Materials in Electronics 6, pp. 249-264, 1995.
    [55] K. Y. Cheng, H. C. Lin, and K. Meneou, “What is MBE,” The MBE Group of the Micro and Nanotechnology Laboratory of The University of Illinois, 1995.
    [56] A. Anselm, “MBE Growth,” http: // www.ece.utexas.edu /projects /ece/mrc/groups/street_mbe/mbechapter.html, 1997.
    [57] E. Kasper and H. J. Herzog, “Elastic strain and misfit dislocation density in SiGe films on Si substrate,” Thin Solid Films, vol. 44, p.357, 1997.
    [58] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “GexSi1-x/Si strained-layer supperlattices growth by molecular beam epitaxy,” J. Vac. Sci. Tech., vol. A2, p. 436, 1984.
    [59] R. A. A. Kubiak, W. Y. Leong and E. H. C. Parker, “P-type doping in Si MBE by coevaporation of boron” Appl. Phys. Lett 44, pp. 878, 1984.
    [60] S. M. Sze, “Semiconductor devices physics and technology,” 1985.
    [61] Semiconductor Physics & Devices (second edition) pp. 308.

    下載圖示 校內:2008-07-11公開
    校外:2008-07-11公開
    QR CODE