| 研究生: |
陳偉祥 Chen, Wei-Shiang |
|---|---|
| 論文名稱: |
局部光分佈對準分子雷射微細加工的影響 The Effects Of Local Light Distribution On Excimer Laser Micro-Machining |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 準分子雷射 、燒蝕 |
| 外文關鍵詞: | Excimer Laser, Ablation |
| 相關次數: | 點閱:74 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究準分子雷射燒蝕後的微結構的預測模式的建立,以及提出其與實驗結果的比較。本文利用傅立葉光學推導雷射光經過光學導引系統之後,光的能量密度在空間中的局部分佈,再配合實驗所得的刻除率對能量密度的曲線,求出材料的局部燒蝕,進一步求得燒蝕後的結構。經由實驗驗證後可知,理論預測與實驗結果有良好的一致性。此模式也顯示出雷射光在偏離聚焦面之後,局部光通量的變化。此模式並且可準確預測出雷射正向或傾斜的入射材料(PI)燒蝕後的截面形狀。
Modeling and experimental work on the ablation of microstructures with excimer laser is presented. The local distribution of the light flux over the fabricated structure is calculated for each pulse by using Fourier optics. The variation of ablation depth with fluence (i.e., the curve of ablation rate) for polyimide is measured. The distribution of the light flux and the curve of ablation rate are then used to calculated the local ablation rate, and so the formation of the structure. The laser beam may be normal or oblique to the surface of polyimide. Predictions are in good agreement with the experimental results. Predictions by the model show that the defocus of the laser beam changes the local distribution of the light flux. The experimental results conform the predictions. The model correctly predicts the wall profiles of the structure for various incline and incident fluences.
1. S. K. Searles and G. A. Hart, 1975, “Stimulated Emission at 281.8 nm from XeBr”, Appl. Phys. Lett., 27, pp. 243-245.
2. H. Ota, T. Oda, and M. Kobayashi, 1995, “Development of Coil Winding Process for Radial Gap Type Electromagnetic Micro-Rotating Machine”, Proceedings of the 1995 IEEE MENS Workshop, pp. 197-202.
3. R. Pethig, J. P. H. Burt, A. Parton, N. Rizvi, M. S. Talary, and J. A. Tame, 1998, “Development of Biofactory-on-a-Chip Technology Using Excimer Laser Micromachining”, J. Micromech. Microeng., 8, pp. 57-63.
4. J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, and H. Löwe, 1995, “Combination of Excimer Laser Micromachining and Replication Processes Suited for Large Scale Production”, Appl. Surf. Sci., 86, pp. 251-258.
5. R. A. Lawes, A. S. Holmes, and F. N. Goodall, 1996, “The Formation of Moulds for 3D Microstructures Using Excimer Laser Ablation”, Microsystem Technol., 3, pp. 17-19.
6. J. Brannon, 1997, “Excimer Laser Ablation and Etching”, IEEE Cir. Dev., 13, pp. 11-18.
7. J. R. Lankard Sr. and G. Wolbold, 1992, “Excimer Laser Ablation of Polyimide in a Manufacturing Facility”, Appl. Phys. A, 54, pp. 355-359.
8. D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. Mckenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, 1986, “Excimer Lasers in Cardiovascular Surgery: Ablation Products and Photoacoustic Spectrum of the Arterial Wall”, Appl. Phys. Lett., 48, pp. 878-880.
9. M. C. Gower, 1993, “ Excimer Laser:Current and Future Applications in Industry and Medicine”, in Laser Processing in Manufacturing, edited by R. C. Crafer and P. J. Oakley (Chapman & Hall, London), pp. 189-261.
10. R. Srinivasan and V. Mayne-Banton, 1982, “Self-developing Photoetching of Poly(ethylene terephthalate) Films by Far-ultraviolet Excimer Laser Radiation”, Appl. Phys. Lett., 41, pp. 576-578.
11. R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, 1986, “Photochemical Cleavage of a Polymeric Solid: Details of the Ultraviolet Laser Ablation of Poly(methyl methacrylate) at 193 nm and 248 nm”, Macromolecules, 19, pp. 916-921.
12. R. Srinivasan, B. Braren, and R. W. Dreyfus, 1987, Ultraviolet Laser Ablation of Polyimide Films”, J. Appl. Phys., 61, pp. 372-376.
13. T. Lippert, R. L. Wedd, S. C. Langford, and J. T. Dickinson, 1999, “Dopant Induced Ablation of Poly(methyl methacrylate) at 308 nm”, J. Appl. Phys., 85, pp. 1838-1847.
14. T. Lippert, S. C. Langford, A. Wokaun, G. Savas, and J. T. Dickinson, 1999, Analysis of Neutral Fragments from Ultraviolet Laser Irradiation of a Photolabile Triazeno Polymer”, J. Appl. Phys., 86, pp. 7116-7122.
15. H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, 1998, “Ultraviolet Laser Ablation of Polymers: Spot Size, Pulse Duration, and Plume Attenuation Effects Explained”, J. Appl. Phys., 83, pp. 5458-5468.
16. H. S. Cole, Y. S. Liu, and H. R. Philipp, 1986, “Dependence of Photoetching Rates of Polymers at 193nm on Optical Absorption Depth”, Appl. Phys. Lett., 48, pp. 76-77.
17. J. E. Andrew, P. E. Dyer, D. Forster, and P. H. Key, 1983, “Direct Etching of Polymeric Materials Using a XeCl Laser”, Appl. Phys. Lett., 43, pp. 717-719.
18. H. H. G. Jelinek and R. Srinivasan, 1984, “Theory of Etching of Polymers by Far-Ultraviolet, High-Intensity Pulsed Laser and Long-Term Irradiation”, J. Phys. Chem., 88, pp. 3048-3051.
19. E. Sutcliffe and R. Srinivasan, 1986, “Dynamics of UV Laser Ablation of Organic Polymer Surfaces”, J. Appl. Phys., 60, pp. 3315-3322.
20. S. Küper, J. Brannon, And K. Brannon, 1993, “Threshold Behavior in Polyimide Photoablation : Single-Shot Rate Measurement and Surface-Temperature Modeling”, Appl. Phys. A, 56, pp. 43-50.
21. G. H. Pettit and R. Sauerbrey, 1993, “Pulsed Ultraviolet Laser Ablation”, Appl. Phys. A, 56, pp. 51-63.
22. G. C. D’Couto and S. V. Babu, 1994, “Heat Transfer and Material Removel in Pulsed Excimer-Laser-Induced Ablation : Pulsewidth Dependence”, J. Appl. Phys., 76, pp. 3052-3058.
23. S. Küper and M. Stuke, 1987, “Femtosecond UV Excimer Laser Ablation”, Appl. Phys. B, 44, pp. 199-204.
24. H. J. Kahlert, U. Sarbach, B. Burghardt, and B. Klimt, 1993, “Excimer Laser Illumination and Image Optics for Controlled Microstructure Generation”, SPIE, 1835, pp. 110-118.
25. P. E. Dyer, D. M. Karnakis, P. H. Key, and P. Monk, 1996, “Excimer Laser Ablation for Micro-Machining:Geometric Effects”, Appl. Surf. Sci., 96-98, pp. 415-419.
26. T. W. Hodapp and P. R. Fleming, 1998, “Modeling Topology Formation during Laser Ablation”, J. Appl. Phys., 84, pp. 577-583.
27. C. Paterson, A. S. Holmes, and R. W. Smith, 1999, “Excimer Laser Ablation of Microstructures:A Numerical Model”, J. Appl. Phys., 86, pp. 6538-6546.
28. K. A. Valiev, L. V. Velikov, G. S. Volkov, and D. Y. Zaroslov, 1989, “The Coherence Factors of Excimer Laser Radiation in Projection Lithography”, J. Vac. Sci. Technol. B, 7, pp. 1616-1619
29. B. E. A. Saleh and M. C. Teich, 1991, Fundamentals of Photonics, John Wiley & Sons, New York.
30. F. L. Pedrotti, S. J. and L. S. Pedrotti, 1993, Introduction to Optics, 2nd ed., Prentice-Hall, New Jersey.
31. J. W. Goodman, 1996, Introduction to Fourier Optics, 2nd ed., McGraw-Hill, San Francisco.
32. M. Born and E. Wolf, 1980, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th Ed., Pergamon Press, New York.
33. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992, Numerical Recipes in Fortran, 2nd Ed., Combridge, New York.
34. R. J. Burden and J. D. Faires, 2001, Numerical Analysis, 7th ed., Brooks/Cole, California.
35 D. A. Tichenor and J. W. Goodman, 1972, “Coherent Transfer Function”, J. Opt. Soc. Am., 62, pp. 293-295.