| 研究生: |
許智淵 Hsu, Chih-Yuan |
|---|---|
| 論文名稱: |
以影像放大法為基礎提升先進視訊編碼中運動估測與壓縮之效能 Image Enlargement Method-Based Performance Improvement of Motion Estimation and Compression in Advanced Video Coding |
| 指導教授: |
郭淑美
Guo, Shu-Mei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 影像放大 、基準函數 、運動估測 、多項式插補模型 、影像壓縮 |
| 外文關鍵詞: | Image enlargement, discrete cosine transform, motion estimation, polynomial interpolation model, image compression |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著多媒體資訊的快速成長,視訊編碼標準採納了許多新技術來增進影像畫質與壓縮效率,然而也會大幅地增加龐大的計算複雜度。本論文提出三個重要的議題進行探討,首先提出一個影像放大法和客觀的影像放大評估方法。再從理論、分析與實作等不同面來探討最具有代表性的運動估測演算法和所提出的快速運動估測演算法。最後,提出一個有效地應用正負號做相差值之集中的影像壓縮法。
影像放大為數位影像處理領域中的一個重要技術,傳統的影像放大技術所遇到的主要問題是影像在放大之後,會使得影像中的物體邊緣有鋸齒狀、模糊等失真問題,因而造成影像品質下降。因此我們提出改良的離散餘弦轉換來獲得運算快速且高品質的超大尺度之放大影像。提出的影像放大法是以矩陣相乘實作離散餘弦轉換來加速運算時間,在超大尺度放大時相對快速,同時也解決了傳統離散餘弦轉換放大時影像偏移與方塊效應的問題。並且提出的影像放大法可以藉由調整轉換矩陣的維度大小來達成指定像素尺寸之放大,並考慮到全域之細節,處理整張影像以獲得更佳品質的放大影像。實驗結果證實提出的改良式離散餘弦轉換放大法有效地達到快速且高品質之影像放大。除此之外,眾多文獻中因為特定縮小方法差異之影響,往往無法客觀地驗證放大影像之品質。因此,此論文基於基準函數的峰值信噪比方法,以基準函數所生成的虛擬圖形作為實驗資料,提出一個客觀的嶄新影像放大評估法。
其次在運動估測部分,運動估測能去除視訊訊號中在時間軸上的冗餘性,因此是許多高性能視訊編碼標準常見的關鍵技術之一。但若是處理的視訊影像之解析度不是很高時,參考資訊實屬有限,若能將提出的影像放大法應用在進行運動估測之運作之前,將能提供更充足的運動估測之資訊,因此,我們基於影像放大法為前處理,提出一個有效的區塊比對運動估測演算法。提出的演算法包含三個步驟: 一、基於提出的影像放大法將原本影像放大N倍後,以四張跳躍的畫面為一群組來建構一個多項式插補模型,並採用全搜尋法來決定最理想的全域運動向量,以獲得初始的搜尋點。二、在插補步驟中,將第一步驟得到的初始搜尋點之運動向量縮小N倍後,根據其預測的方向性執行一個適應性的搜尋區塊尺寸決策模式來快速得到最佳的運動向量。三、使用中途停止運算技術來減少計算量。實驗結果也顯示提出來的演算法與全搜尋演算法比較,執行速度最快能提升366.47倍,並且在PSNR效能上只有降低0.52%的而已。
最後,針對靜態影像編碼進行討論。在近年來,文獻相繼提出基於預測方法的無失真影像壓縮演算法,根據空間上的相關性,使用不同的係數加權於鄰近點上,以期望能產生壓縮率高的預測圖。許多研究著重在加強預測的準確性,為了尋找鄰近點的最佳係數,卻增加了時間複雜度。本研究的目的,在於尋找有效且快速的方法,並在不增加時間複雜度之情況下加強壓縮率。本論文改進了基於預測方法之無失真影像壓縮法:有效地應用正負號做相差值之集中。此壓縮方法的貢獻是以一種嶄新的方式集中相差值進而提升壓縮率。實驗結果顯示在細節較多或是相同紋理較少的影像,我們所提出的方法比CALIC的壓縮率還高。
With the rapid growth of multimedia information, video coding standards utilize several new techniques to improve image quality and compression ratio. However, it increases huge computational complexity. This dissertation studies three topics. First, a fast large-scale image enlargement method with an objective evaluation approach is proposed. Secondly, an efficient block-matching algorithm is proposed for motion estimation from the aspects of theory, analysis and experiment. Finally, we present an improved lossless image compression with efficient error value centralization by sign bits.
In the first topic, image enlargement is a critical technique in image processing domain, but there are the shifting effect and the blocky effect that occur in traditional DCT for image enlargement. Therefore, a fast large-scale image enlargement method via the improved discrete cosine transform (DCT) is proposed to improve the computational speed and quality of the large-scale enlargement image. The proposed image enlargement algorithm based on DCT saves computational time by multiplication of the DCT matrix, especially for the large-scale image enlargement. Compared to the traditional DCT approach, the improved approach eliminates the image shifting and blocky effects. In comparisons to other interpolation methods, the proposed DCT enlargement outperforms other interpolation methods in edge details because the proposed DCT enlargement considers the global frequency information of the whole image. With the DCT enlargement, it is easy to implement the arbitrary pixel-size-based zooming of an image by employing the suitable size of transform matrix. Illustrative examples show the proposed approach performs higher image quality and lower computation time than other traditional and existing methods. On the other hand, traditional researches use the specific image reduction methods which significantly influence the comparison of enlargement algorithm. And, specific image reduction methods will lead unfair measure of enlargement performance. Therefore, an objective novel evaluation approach, implemented by the benchmark function-based peak signal-to-noise ratio (PSNR), particularly suitable for evaluating the performance of a large-scale enlargement of a small size image is proposed in this dissertation.
The second topic is motion estimation, for reducing the temporal redundancy, the development of a fast and effective ME algorithm has been a challenging task for years. When the resolution of video sequences is not high/clear, the reconstructive performance through motion estimation will be limitative. The proposed image enlargement method can provide more sufficient information for motion estimation. Therefore, we proposed an effective block-matching motion estimation algorithm based on image enlargement preprocessing. The proposed algorithm consists of three effective steps: 1) apply the full search algorithm to construct a polynomial interpolation (PI) model from the group with four skipping frames to determine near-optimal global motion vector for the initial search point, 2) perform an adaptive search block-size decision in the interpolation step to refine the motion vector (MV) and 3) use the half-way stop technique to reduce search points. Our experimental results show that the proposed algorithm achieves a maximum speed-up factor of 366.47 with only 0.52% peak signal-to-noise ratio (PSNR) degradation in comparison with the full search algorithm.
In the last two decades, there exist many high-performance prediction-based methods that use different coefficients of causal neighbors in order to exploit the relationship of spatial energy to produce a less error image. Besides, more and more researches focus on the accuracy of predictor; nevertheless, the predictor spends a lot of time on finding the best coefficients of causal neighbors. The objective of our research is to propose an efficient and implementable method to improve compression ratio, without increasing extra computation complexity. Here, we present an improved lossless image compression based on the prediction method with the proposed efficient error value centralization by sign bits. The contribution of this dissertation is to centralize error values in a novel way to improves coding performance. Experimental results show that our proposed method achieves higher compression ratio than the context-based, adaptive, and lossless image codec (CALIC) method for the images with many details or slightly regular texture.
[1] R. C. Gonzalez and R. E. Woods, Digital image processing, 3rd ed.: Prentice Hall, 2007.
[2] Y. C. Wee and H. J. Shin, “A novel fast fractal super resolution technique,” IEEE Transactions on Consumer Electronics, vol. 56, pp. 1537-1541, 2010.
[3] X. Zhang, K. M. Lam, and L. Shen, “Image magnification based on a blockwise adaptive markov random field model,” Image and Vision Computing, vol. 26, pp. 1277-1284, 2008.
[4] X. Liang and Z. Gan, “Improved non-local iterative back-projection method for image super-resolution,” 2011 Sixth International Conference on Image and Graphics, pp. 176-181, 2011.
[5] S. M. Guo, C. B. Li, C. W. Chen, Y. C. Liao, and J. S. H. Tsai, “Enlargement and reduction of image/video via discrete cosine transform pair--- part i: novel 3-d DCT and enlargement,” Journal of Electronic Imaging, vol. 16, pp. 043006-1 - 043006-19, 2007.
[6] S. M. Guo, C. Y. Hsu, G. C. Shih, and C. W. Chen, “Fast pixel-size-based large scale enlargement and reduction of image: An adaptive combination of bilinear interpolation and DCT,” Journal of Electronic Imaging, vol. 20, pp. 033005-1 - 033005-15, 2011.
[7] W. Zhang and W. Cham, “Hallucinating face in the DCT domain,” IEEE Transactions on Image Processing, vol. 20, pp. 2769-2779, 2011.
[8] H. Demirel and G. Anbarjafari, “Discrete wavelet transform-based satellite image resolution enhancement,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, pp. 1997-2004, 2011.
[9] N. Hansen, S. Finck, R. Ros, and A. Auger, Real-parameter black-box optimization benchmarking 2010: Noiseless functions definitions. Available: http://coco.gforge.inria.fr/doku.php?id=bbob-2010-downloads
[10] C. C. Lin, M. H. Sheu, H. K. Chiang, and C. Liaw, “High-performance very large scale integration architecture design for various-ratio image scaling,” Journal of Electronic Imaging, vol. 17, pp. 1-11, 2008.
[11] B. D. Choi and H. Yoo, “Design of piecewise weighted linear interpolation based on even-odd decomposition and its application to image resizing,” IEEE Transactions on Consumer Electronics, vol. 55, pp. 2280-2286, 2009.
[12] X. Jia, “A method of image enlargement based on constrained pixels,” 2009 International Congress on Image and Signal Processing, pp. 1-5, 2009.
[13] J. W. Han, J. H. Kim, S. H. Cheon, J. O. Kim, and S. J. Ko, “A novel image interpolation method using the bilateral filter,” IEEE Transactions on Consumer Electronics, vol. 56, pp. 175-181, 2010.
[14] T. Hermosilla, E. Bermejo, A. Balaguer, and L. Ruiz, “Non-linear fourth-order image interpolation for subpixel edge detection and localization,” Image and Vision Computing, vol. 26, pp. 1240-1248, 2008.
[15] D. H. Lee, “A new edge-based intra-field interpolation method for deinterlacing using locally adaptive-thresholded binary image,” IEEE Transactions on Consumer Electronics, vol. 54, pp. 110-115, 2008.
[16] H. Kim, Y. Cha, and S. Kim, “Curvature interpolation method for image zooming,” IEEE Transactions on Image Processing, vol. 20, pp. 1895-1903, 2011.
[17] M. J. Chen, C. H. Huang, and W. L. Lee, “A fast edge-oriented algorithm for image interpolation,” Image and Vision Computing, vol. 23, pp. 791-798, 2005.
[18] W. Z. Shao and Z. H. Wei, “Edge-and-corner preserving regularization for image interpolation and reconstruction,” Image and Vision Computing, vol. 26, pp. 1591-1606, 2008.
[19] M. Li and T. Q. Nguyen, “Markov random field model-based edge-directed image interpolation,” IEEE Transactions on Image Processing, vol. 17, pp. 1121-1128, 2008.
[20] S. Dai, M. Han, W. XU, H. Y. Wu, Y. Gong, “Soft edge smoothness prior for alpha channel super resolution,” CVPR, 2007.
[21] J. Sun, J. Sun, Z. Xu, H. Y. Shum, “Image super-resolution using gradient profile prior,” CVPR, 2008.
[22] H. Kawano, N. Suetake, B. Cha, and T. Aso, “Sharpness preserving image enlargement by using self-decomposed codebook and mahalanobis distance,” Image and Vision Computing, vol. 27, pp. 684-693, 2009.
[23] J. H. Lee, J. O. Kim, J. W. Han, K. S. Choi, and S. J. Ko, “Edge-oriented two-step interpolation based on training set,” IEEE Transactions on Consumer Electronics, vol. 56, pp. 1848-1855, 2010.
[24] S. H. Hong, R. H. Park, S. Yang, and J. Y. Kim, “Image interpolation using interpolative classified vector quantization,” Image and Vision Computing, vol. 26, pp. 228-239, 2008.
[25] Y. Hu, K. M. Lam, G. Qiu, and T. Shen, “From local pixel structure to global image super-resolution: A new face hallucination framework,” IEEE Transactions on Image Processing, vol. 20, pp. 433-445, 2011.
[26] S. Zhang and and Y. Lu, “Image resolution enhancement via image restoration usingneural network,” Journal of Electronic Imaging, vol. 20, pp. 1-10, 2011.
[27] H. Y. Chen and J. J. Leou, “Saliency-directed color image interpolation using artificial neural network and particle swarm optimization,” Visual Communication and Image Representation, vol. 23, pp. 343-358, 2012.
[28] L. Jin, D. Li, and E. Song, “Combining vector ordering and spatial information for color image interpolation,” Image and Vision Computing, vol. 27, pp. 410-416, 2009.
[29] M. Ghanbari, “The cross-search algorithm for motion estimation,” IEEE Transactions on Communication, vol. 38, pp. 950-953, 1990.
[30] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, pp. 313-317, 1996.
[31] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block-matching motion estimation,” IEEE Transactions on Image Processing, vol. 9, pp. 287-290, 2000.
[32] C. Zhu, X. Lin, and L. P. Chau, “Hexagon-based search pattern for fast block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, pp. 349-355, 2002.
[33] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 4, pp. 438-442, 1994.
[34] X. Jing and L.-P. Chau, “An efficient three-step search algorithm for block motion estimation,” IEEE Transactions on Multimedia, vol. 6, pp. 435-438, 2004.
[35] C. Zhu, X. Lin, L. Chau, and L.-M. Po, “Enhanced hexagonal search for fast block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, pp. 1210-1214, 2004.
[36] C. H. Cheung and L. M. Po, “novel cross-diamond-hexagonal search algorithms for fast block motion estimation,” IEEE Transactions on Multimedia, vol. 7, pp. 16-22, 2005.
[37] S. C. Tai, Y. R. Chen, and Y. H. Chen, “Small-diamond-based search algorithm for fast block motion estimation,” Signal Processing: Image Communication, vol. 22, pp. 877-890, 2007.
[38] K. H. Ng, L. M. Po, K. M. Wong, C. W. Ting, and K. W. Cheung, “A search patterns switching algorithm for block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, pp. 753-759, 2009.
[39] H. Nisar and T. S. Choi, “Fast block motion estimation algorithm based on motion classification and directional search patterns,” Optical Engineering, vol. 47, pp. 1-10, 2008.
[40] L. M. Po, K. H. Ng, K. W. Cheung, K. M. Wong, Y. M. S. Uddin, and C. W. Ting, “Novel directional gradient descent searches for fast block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, pp. 1189-1195, 2009.
[41] C. M. Kuo, Y. H. Kuan, C. H. Hsieh and Y. H. Lee, “A novel prediction-based directional asymmetric search algorithm for fast block-matching motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, pp. 893-899, 2009.
[42] L. Luo, C. Zou, X. Gao, and Z. He, “A new prediction search algorithm for block motion estimation in video coding,” IEEE Transactions on Consumer Electronics, vol. 43, pp. 56-61, 1997.
[43] A. M. Tourapis, O. C. Au, and M. L. Liou, “Highly efficient predictive zonal algorithms for fast block-matching motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, pp. 934-947, 2002.
[44] Y. Nie and K. K. Ma, “Adaptive rood pattern search for fast block-matching motion estimation,” IEEE Transactions on Image Processing, vol. 11, pp. 1442-1449, 2002.
[45] X. Chen, N. Canagarajah, and J. L. N. Y., “Backward adaptive pixel-based fast predictive motion estimation,” IEEE Signal Processing Letters, vol. 16, pp. 370-373, 2009.
[46] H. Y. Lim, A. A. Kassim, and P. H. N. De, “Predictive and adaptive rood pattern with large motion search for H.264 video coding,” Journal of Electronic Imaging, vol. 18, pp. 1-14, 2009.
[47] Y. C. Ouyang, L. J. Huang, and H. M. Chen, “Predictive cross-hexagon search algorithm for fast block motion estimation,” Journal of Electronic Imaging, vol. 18, pp. 1-11, 2009.
[48] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, pp. 560-576, 2003.
[49] I. E. G. Richardson, “H.264 and MPEG-4 video compression: video coding for next-generation multimedia,” Wiley, London, 2003.
[50] D. Wu, et al., “Fast intermode decision in H.264/AVC video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, pp. 953-958, 2005.
[51] H. Zeng, C. Cai, and K. K. Ma, “Fast mode decision for H.264/AVC based on macroblock motion activity,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, pp. 1-11, 2009.
[52] Z. Liu, L. Shen, and Z. Zhang, “An efficient intermode decision algorithm based on motion homogeneity for H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, pp. 128-132, 2009.
[53] D. Kim, J. Kim, and J. Jeong, “Adaptive macroblock mode selection for reducing the encoder complexity in H.264,” In: ACVIS, pp. 396-405, 2006.
[54] L. A. Sousa, “General method for eliminating redundant computations in video coding,” Electronic Letter, vol. 36, pp. 306-307, 2000.
[55] G. Y. Kim, Y. H. Moon, and J. H. Kim, “An early detection of all-zero DCT block in H.264,” In: Proceedings of the International Conference on Image Processing (ICIP), vol. 1, pp. 453-456, 2004.
[56] Y. H. Moon, G. Y. Kim, and J.H. Kim, “An improved early detection algorithm for all-zero blocks in H.264 video encoding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, pp. 1053-1057, 2005.
[57] H. Wang, S. Kwong, and C. W. Kok, “An efficient mode decision algorithm for H.264/AVC encoding optimization,” IEEE Transactions on multimedia, viol. 9, pp. 882-888, 2007.
[58] X. Lu and G. R. Martin, “Fast mode decision algorithm for the H.264/AVC scalable video coding extension,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, pp. 846-855, 2013.
[59] J. M. Amaya, M. E. Eduardo, and D. M. Fernando, “Mode decision-based algorithm for complexity control in H.264/AVC,” IEEE Transactions on multimedia, vol. 15, pp. 1094-1109, 2013.
[60] S. Y. Hung, Y. K. Lee, R. Z. Wang, and Y. H. Chen, “Threshold-based successive elimination algorithm for block motion estimation,” Optical Engineering, vol. 45, pp. 1-11, 2006.
[61] X. Yi and N. Ling, “Improved normalized partial distortion search with dual-halfway-stop for rapid block motion estimation,” IEEE Transactions on Multimedia, vol. 9, pp. 995-1003, 2007.
[62] M. G. Sarwer, and Q. M. Jonathan, “Efficient two step edge based partial distortion search for fast block motion estimation,” IEEE Transactions on Consumer Electronics, vol. 55, pp. 2154-2162, 2009.
[63] L. Shen, Z. Liu, P. An, R. Ma, and Z. Zhang, “Fast mode decision for scalable video coding utilizing spatial and interlayer correlation,” Journal of Electronic Imaging, vol. 19, pp. 1-8, 2010.
[64] A. Avci, J. D. Cock, J. D. Smet, Y. Meuret, P. Lambert, and H. D. Smet, “Reduced-complexity multiview prediction scheme with content-adaptive disparity vector estimation,” Journal of Electronic Imaging, vol. 21, pp. 1-7, 2012.
[65] M. G. Sarwer, and Q. M. J. Wu, “Adaptive variable block-size early motion estimation termination algorithm for H.264/AVC Video Coding Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, pp. 1196-1201, 2009.
[66] S. M. Guo, C. Y. Hsu, P. N. Wu, and J. S. H. Tsai, “A trajectory-based point tracker using chaos evolutionary programming,” in The Twenty Second International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA-AIE 2009), Tainan, Taiwan, pp. 212-220, 2009.
[67] S. M. Guo and C. Y. Hsu, “Efficient block-matching motion estimation algorithm,” Journal of Electronic Imaging, vol. 22, pp. 023016-1 - 023016-7, 2013.
[68] Joint Video Team of ITU-T and ISO/IEC JTC 1: Draft ITU-T recommendation and final draft international standard of joint video specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC), document JVT-G050r1, 2003.
[69] X. Li and M. T. Orchard, “Edge directed prediction for lossless compression of natural images,” IEEE Transactions on Image Processing, vol. 10, pp. 813-817, Jun. 2001.
[70] B. Meyer and P. E. Tischer, “Grey level image compression by adaptive weighted least squares,” in Proceedings of Data Compression Conference, pp. 503, 2001.
[71] I. Matsuda, N. Ozaki, Y. Umezu, and S. Itoh, “Lossless coding using variable block-size adaptive prediction optimized for each image,” in Proceedings of 13th European Signal Processing Conference (EUSIPCO-2005), Sep. 2005.
[72] X. O. Zhao and Z. H. He, “Lossless image compression using super-spatial structure prediction,” IEEE Signal Processing Letters, vol. 17, pp. 383-386, Apr. 2010.
[73] S. M. Guo, Y. W. Lee, C. Y. Hsu, and S. J. Guo, “Performance improvement of set partitioning embedded block algorithm for still image compression,” in The 27th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA-AIE 2014), Kaohsiung, Taiwan, 2014.
[74] M. J. Weinberger, G. Seroussi, and G. Sapiro, “From LOCO-I to the JPEG-LS standard,” In Proceedings of International Conference on Image processing (ICIP), Kobe, Japan, vol. 4, pp. 68-72, 1999.
[75] X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE Transactions on Communications, vol. 45, pp. 437-444, Apr. 1997.
[76] S. A. Martucci, “Reversible compression of HDTV images using median adaptive prediction and arithmetic coding,” In Proc. of IEEE ISCAS, pp. 1301-1313, 1990.
[77] J. Shukla, M. Alwani, and A. K. Tiwari, “A survey on lossless image compression methods,” In 2010 2nd International Conference on Computer Engineering and Technology (ICCET), vol.6, pp. 136-141, Apr. 2010.
[78] S. M. Guo, C. Y. Hsu, and J. S. H. Tsai, “Efficient image compression based on error value centralization by sign bits,” in Proceedings of IEEE TENCON 2013, Xian, China, 2013.
[79] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? A new look at signal fidelity measures,” Signal Processing Magazine, IEEE, vol. 26, pp. 98-117, 2009.
[80] C. C. Chang, Y. C. Chou, Y. H. Yu, and K. J. Shih, “An image zooming technique based on vector quantization approximation,” Image and Vision Computing, vol. 23, pp. 1214-1225, 2005.
[81] R. Ferzli and L. J. Karam, “A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB),” IEEE Transactions on Image Processing, vol. 18, pp. 717-728, 2009.
[82] The jpeg committee home page. Available: http://www.jpeg.org/
[83] W. Zheng and Y. Liu, “Research in a fast DCT algorithm based on jpeg,” 2011 International Conference on Consumer Electronics, Communications and Networks, pp. 551-553, 2011.
[84] J. Xiuhua and Z. Caiming, “A fast idct algorithm for image decompression,” Chinese Journal of Computer, vol. 28, pp. 2079-2088, 2005.
[85] Sipi image database. Available: http://sipi.usc.edu/database/
[86] Satellite images and geospatial data for gis & mapping applications. Available: http://www.satimagingcorp.com/
[87] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 29, pp. 1153-1160, 1981.
[88] W. K. Carey, D. B. Chuang, and S. S. Hemami, “Regularity-preserving image interpolation,” IEEE Transactions on Image Processing, vol. 8, pp. 1293-1297, 1999.
[89] C. Liu and X. Luo, “Image enlargement via interpolatory subdivision,” IET Image Processing, , vol. 5, pp. 567-571, 2011.
[90] K. W. Hung and W. C. Siu, “Real-time interpolation using bilateral filter for image zoom or video up-scaling/transcoding,” 2012 IEEE International Conference on Consumer Electronics, pp. 67-68, 2012.
[91] B. Eric, C. Malte, and K. Joachim, “Arithmetic coding revealed – A guided tour from theory to praxis,” McGill University School of Computer Science Sable Research Group, Sable Technical Report no. 2007-5, May 200.
[92] I. Matsuda, N. Shirai, and S. Itoh, “Lossless coding of still images using minimum-rate predictors,” in Proceedings of International Conference on Image Processing, vol. 1, pp. 132-135, 2000.
[93] J. Oliver and M. P. Malumbres, “Low-complexity multiresolution image compression using wavelet lower trees,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, pp. 1437-1444, Nov. 2006.
[94] Itoh Lab. http://itohws03.ee.noda.sut.ac.jp/~matsuda/mrp/
校內:2024-12-31公開