簡易檢索 / 詳目顯示

研究生: 曾泓語
Tseng, Hung-Yu
論文名稱: 探討台灣台東區域震波衰減因子與地熱分布相關性
Discussion the relationship between Quality factor and geothermal distribution in Taitung area, Taiwan
指導教授: 吳泓昱
Wu, Hung-Yu
共同指導教授: 余騰鐸
Yu, Teng-To
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 地震波尾波歸一化法衰減因子(Q)震波衰減地熱
外文關鍵詞: seismic wave, coda normalization method, quality factor (Q), attenuation, geothermal
相關次數: 點閱:105下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地熱作為世界各國競相發展的綠色能源,在減少碳足跡中扮演著不可或缺的角色。 在台灣,由於位於板塊交界的天然地理位置,在地熱能源擁有極大的開發潛能。在進 行地熱資源開發前,會利用於各式地熱資源量評估方法瞭解地熱開發價值,間接方法 有地球物理方法(例如:重力、磁力及波速等)、地球化學方法(例如:水的液相、氣 相及同位素組成分析、沈積物分析等)及直接觀測的地下鑽井。震波衰減因子(Quality Factor , Q)源自於震波在介質中傳播過程中能量的損失,與研究區域的介質性質直接相 關,對於理解地球內部成分和物理機制十分重要。在地殼及上部地函中,Q 對溫度、 液體、滲透性、孔隙率等等地球物理特性的反應較地震波速更為敏銳。因此本研究使 用衍生尾波歸一化法計算台東地區 P 波及 S 波的衰減因子(Q),藉由觀測通過不同地 層時衰減因子(Q)的變化,探討路徑中溫度對衰減因子(Q)的影響,以此方法找出具地 熱資源開發價值的區域。資料來源則是使用 P 波警報器強震網中台東地區 2016 至 2021 年的地震事件,並挑選地震規模 3.5 到 5.6、震源深度 10 km 以內、震央距 70 km 以內 的歷史地震,共 19 筆。在地震資料處理中,將資料進行訊噪比篩選,訊噪比。並依據 測站與震源路徑經過不同地層的情況進行分類。在本研究的區域中,發現明顯在地溫 異常的震波衰減遠高於周圍區域,也導致衰減因子產生負值的現象。為了驗證此異常 Q 值,以便進行後續對地熱區域劃分及討論,本研究改變對尾波時窗的挑選方式,以 尾波頻譜振幅為背景噪音的兩倍訊噪比作為各別資料的最適當時窗並重新進行計算, 可校正此區域之 Q 值,但仍發現部分測站仍為異常 Q 值,起因為路徑中有更為高溫 的地層造成的衰減。除此之外,當路徑溫度相對較高時,在計算時的對數值也會因此 有明顯下降。在本研究藉由最佳化尾波歸一化法程式進行衰減因子的計算及整理建立 一套從原始地震資料處理及計算到結果展示的完整程序,可作為地熱探勘評估之標準 流程與地熱場址篩選的參考依據。

    The investigation of the underground geological environment is very important when developing geothermal energy resources. In the study, we select earthquakes and stations located in the Taitung region, and distinguish the difference in the attenuation of seismic waves in the path. We expect that the precise distribution of geothermal potential in the Taitung region can be found, which can be used as the basis for the development of geothermal energy. We used the extended coda normalization method to calculate quality factor (Q) of the P-wave and S-wave in the Taitung area. In this method, we can identify the area with high geothermal resource potential. All the seismograms used in this study were recorded by P-Alert Strong Motion Network in the Taitung area from 2016 to 2021. We chose the earthquake events with magnitude between 3.5 to 5.6, focal depth shallower than 10 km, and epicenter distance less than 70 km. There are 19 earthquake events are picked for the analysis in total and be classified according to the station and the source path passing through different strata. In the study area, it is found that the attenuation of the temperature anomaly area is much higher than that of the surrounding area, which also leads to the phenomenon that the quality factor has a negative value. To verify this abnormal Q value for the subsequent division and discussion of geothermal regions, this study changed the method of selecting the coda time window, taking the coda spectrum amplitude as twice the background noise as the most appropriate time for each data. But it is found that some stations still have abnormal Q value, which attenuation caused by higher temperature formations in the path. In this study, a complete set of procedures from raw seismic data processing and calculation to result display is established by optimizing the extended coda normalization method to calculate and organize the quality factor. It can be used as a procedure for geothermal exploration, reference basis for geothermal field screening and evaluation.

    中文摘要 ........................................................................................................................... I Extended Abstract ........................................................................................................ II 致謝 ...............................................................................................................................VIII 目錄 ................................................................................................................................ IX 圖目錄 ............................................................................................................................. XI 表目錄 ............................................................................................................................XV 符號說明 .......................................................................................................................XVI 第一章 緒論 ......................................................................................................................1 1.1 研究動機與目的 ...................................................................................................1 1.2 研究區域概述 .......................................................................................................4 1.3 文獻回顧 ...............................................................................................................9 1.4 本研究內容 .........................................................................................................14 第二章 研究方法 .............................................................................................................15 第三章 研究區域與資料篩選處理 .................................................................................18 2.1 研究區域與資料選取 .........................................................................................18 2.2 資料篩選處理 .....................................................................................................25 2.3 尾波擷取窗調整 .................................................................................................28 2.4 尾波歸一化 .........................................................................................................34 2.5 研究流程 .............................................................................................................37 第四章 結果與討論 .........................................................................................................39 4.1 研究結果 .............................................................................................................39 4.2.1 單一測站與多筆地震事件 ......................................................................39 4.2.2 單一地震事件對多個測站 ......................................................................47 4.2 路徑區分 .............................................................................................................56 4.2.3 單一測站對多筆地震資料及曲線差異 ..................................................56 4.2.4 單一地震事件對多個測站 ......................................................................64 4.3地熱區域劃分與前人研究比較 .........................................................................78 4.3.1 地質圖比較 ..............................................................................................79 4.3.2 地溫梯度比較 ..........................................................................................80 4.3.3 溫泉分佈比較 ..........................................................................................84 第五章 結論與建議 .........................................................................................................87 5.1結論 .....................................................................................................................87 5.2建議 .....................................................................................................................88 參考文獻 .........................................................................................................................89 附錄 A 旋轉分量程式碼...................................................................................................97 附錄 B 格式轉換程式碼....................................................................................................98

    Abdel-Fattah, A. K. (2009). Attenuation of body waves in the crust beneath the vicinity of Cairo Metropolitan area (Egypt) using coda normalization method. Geophysical Journal International, 176(1), 126-134. doi:10.1111/j.1365-246X.2008.03936.x
    Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. Journal of geophysical research, 74(2), 615-631.
    Aki, K. (1980). Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Physics of the Earth and Planetary Interiors, 21(1), 50-60.
    Aki, K., & Chouet, B. (1975). Origin of coda waves: source, attenuation, and scattering effects. Journal of geophysical research, 80(23), 3322-3342.
    Akinci, A., and H. Eyidogan (1996). Frequency dependent attenuation of S and coda waves in Erzincan region (Turkey), Phys. Earth Planet. In. 97, 109–119.
    Alexander Richte (2022). Global geothermal power generation capacity stood at 15,854 MW at the year-end 2021. Despite the challenges of the pandemic new capacity was added in several countries. From https://www.thinkgeoenergy.com/thinkgeoenergys-top-10-geothermal-countries-2021-installed-power-generation-capacity-mwe/
    Barton, N. (2006). Rock quality, seismic velocity, attenuation and anisotropy: CRC press.
    Bianco, F., E. Del Pezzo, M. Castellano, J. Ibanez, and F. Di Luccio (2002). Separation of intrinsic and scattering seismic attenuation in the southern Apennine zone, Italy, Geophys J. Int. 150, 10–22.
    Bianco, F., M. Castellano, E. Del Pezzo, and J. M. Ibanez (1999). Attenua- tion of short-period seismic waves at Mt. Vesuvius, Italy, Geophys. J. Int. 138, 67–76.
    Bindi, D., S. Parolai, H. Grosser, C. Milkereit, and S. Karakisa (2006). Crustal attenuation characteristics in northwestern Turkey in the range from 1 to 10 Hz, Bull. Seismol. Soc. Am. 96, 200–214.
    Blakeslee, S., Malin, P., & Alvarez, M. (1989). Fault‐zone attenuation of high‐frequency seismic waves. Geophysical Research Letters, 16(11), 1321-1324.
    Castro, R. R., C. Condori, O. Romero, C. Jacques, and M. Suter (2008). Seismic attenuation in northeastern Sonora, Mexico, Bull. Seismol. Soc. Am. 98, 722–732.
    Castro, R. R., F. Pacor, A. Sala, and C. Petrungaro (1996). S wave attenuation and site effects in the region of Friuli, Italy, J. Geophys. Res. 101,22,355–22,369.
    Castro, R. R., O. M. Romero, and M. Suter (2002). Red sísmica para el monitoreo de la sismicidad del sistema de fallas normales del noreste de Sonora, Geos 22, 379 (in Spanish).
    Chang, C.P., Angelier, J., & Lu, C.-Y. (2009). Polyphase deformation in a newly emerged accretionary prism: Folding, faulting and rotation in the southern Taiwan mountain range. Tectonophysics, 466(3-4), 395-408.
    Chang, L.S. and Y.T. Yeh (1983). The Q value of strong ground motion in Taiwan. Bull. Inst. Earth Sci., Academia Sinica, 3, 127-148.
    Chen, K. C., J. M. Chiu, and Y. T. Yang (1994). Qp Qs relations in a sedimentary basin of the upper Mississippi Embayment using converted phases, Bull. Seismol. Soc. Am. 84, 1861–1868.
    Chung, T.W. & Lee, K. (2003). A study of high-frequency QLg−1 in the crust of South Korea, Bull. seism. Soc. Am., 93, 1401–1406.
    Chung, T.W., & Sato, H. (2001). Attenuation of high-frequency P and S waves in the crust of southeastern South Korea. Bulletin of the Seismological Society of America, 91(6), 1867-1874.
    D'amore, F., & Panichi, C. (1985). Geochemistry in geothermal exploration. International journal of energy research, 9(3), 277-298.
    Dutta, U., N. N. Biswas, D. A. Adams, and A. Papageorgiou (2004). Analysis of S-wave attenution in south-central Alaska, Bull. Seismol. Soc. Am. 94, 16–28.
    Eberhart‐Phillips, D., & Chadwick, M. (2002). Three‐dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand. Journal of Geophysical Research: Solid Earth, 107(B2), ESE 3-1-ESE 3-15.
    Giampiccolo, E., S. Gresta, and G. Ganci (2003). Attenuation of body waves in southeastern Sicily (Italy), Phys. Earth Planet. In. 135, 267–279.
    Giampiccolo, E., T. Tuvè, S. Gresta, and D. Patanè (2006). S-waves attenua- tion and separation of scattering and intrinsic absorption of seismic energy in southeastern Sicily (Italy), Geophys. J. Int. 165, 211–222.
    Gündüz, H., K. O. Ayşe, B. G. Aysun, and T. Niyazi (1998). S-wave attenua- tion in the Marmara region, northwestern Turkey, Geophys Res. Lett. 25, 2733–2736.
    Hatzidimitriou, P. M. (1995). S-wave attenuation in the crust in northern Greece, Bull. Seismol. Soc. Am. 85, 1381–1387.
    Horasan, G., and A. Boztepe-Güney (2004). S-wave attenuation in the Sea of
    Jackson, D. D., and D. L. Anderson (1970). Physical mechanism of seismic wave attenuation, Rev. Geophys. Space Phys. 8, 1–63.
    Jennejohn, D. (2009). Research and development in geothermal exploration and drilling. Geothermal Energy Association, 1-25.
    Kana, J. D., Djongyang, N., Raïdandi, D., Nouck, P. N., & Dadjé, A. (2015). A review of geophysical methods for geothermal exploration. Renewable and sustainable energy reviews, 44, 87-95.
    Kim, K. D., Chung, T. W., & Kyung, J. B. (2004). Attenuation of high-frequency P and S waves in the crust of Choongchung provinces, central South Korea. Bulletin of the Seismological Society of America, 94(3), 1070-1078.
    Kinoshita, S. (1994). Frequency-dependent attenuation of shear waves in the crust of the southern Kanto area, Japan, Bull. Seismol. Soc. Am. 84,1387–1396.
    Knopoff, L., & Hudson, J. (1964). Scattering of elastic waves by small inhomogeneities. The Journal of the Acoustical Society of America, 36(2), 338-343.
    Kumar, N., Mate, S., & Mukhopadhyay, S. (2014). Estimation of Q p and Q s of Kinnaur Himalaya. Journal of seismology, 18(1), 47-59.
    Lee, W. H. K., Bennett, R., & Meagher, K. (1972). A method of estimating magnitude of local earthquakes from signal duration: Citeseer.
    Lees, J. M., & Lindley, G. T. (1994). Three‐dimensional attenuation tomography at Loma Prieta: Inversion of t* for Q. Journal of Geophysical Research: Solid Earth, 99(B4), 6843-6863.
    Lukawski, M. Z., Anderson, B. J., Augustine, C., Capuano Jr, L. E., Beckers, K. F., Livesay, B., & Tester, J. W. (2014). Cost analysis of oil, gas, and geothermal well drilling. Journal of Petroleum Science and Engineering, 118, 1-14.
    Ma’hood, M., Hamzehloo, H., & Doloei, G. J. (2009). Attenuation of high frequency P and S waves in the crust of the East-Central Iran. Geophysical Journal International, 179(3), 1669-1678.
    Marmara, Turkey, Phys. Earth Planet. In. 142, 215–224.
    Martynov, V. G., F. L. Vernon, R. J. Mellors, and G. L. Pavlis (1999). High-frequency attenuation in the crust and upper mantle of the northern Tien Shan, Bull. Seismol. Soc. Am. 89, 215–238.
    Mele, G., A. Rovelli, D. Seber, and M. Barazangi (1997). Shear wave attenuation in the lithosphere beneath Italy and surrounding regions: Tectonic implications, J. Geophys. Res. 102, 11863–11875.
    Mohamed, A., Salehi, S., & Ahmed, R. (2021). Significance and complications of drilling fluid rheology in geothermal drilling: A review. Geothermics, 93, 102066.
    Ortega, R., and M. González (2007). Seismic-wave attenuation and source excitation in La Paz–Los Cabos, Baja California Sur, Mexico, Bull. Seismol. Soc. Am. 97, 545–556.
    Padhy, S. (2009b). Characteristics of body-wave attenuations in the Bhuj crust. Bulletin of the Seismological Society of America, 99(6), 3300-3313.
    Padhy, S., and N. Subhadra (2010). Attenuation of high-frequency seismic waves in northeast India, Geophys. J. Int. 181, 453–467.
    Padhy, S., Subhadra, N., & Kayal, J. R. (2011). Frequency-Dependent Attenuation of Body and Coda Waves in the Andaman Sea Basin. Bulletin of the Seismological Society of America, 101(1), 109-125. doi:10.1785/0120100032
    Padhy, S., Subhadra, N., & Kayal, J. R. (2011). Frequency-Dependent Attenuation of Body and Coda Waves in the Andaman Sea Basin. Bulletin of the Seismological Society of America, 101(1), 109-125. doi:10.1785/0120100032
    Parvez, I. A., Yadav, P., & Nagaraj, K. (2012). Attenuation of P, S and coda waves in the NW-Himalayas, India. International Journal of Geosciences, 3(01), 179.
    Patanè, D., F. Ferrucci, and S. Gresta (1994). Spectral features of microearth- quakes in volcanic areas: Attenuation in the crust and amplitude response of the site at Mt. Etna, Italy, Bull. Seismol. Soc. Am. 84, 1842–1860.
    Polatidis, A., A. Kiratzi, P. Hatzidimitriou, and B. Margaris (2003). Attenuation of shear-waves in the back-arc region of the Hellenic arc for frequencies from 0.6 to 16 Hz, Tectonophysics 367, 29–40.
    Predein, P. A., Dobrynina, A. A., Tubanov, T. A., & German, E. I. (2017). CodaNorm: A software package for the body-wave attenuation calculation by the coda-normalization method. SoftwareX, 6, 30-35.doi:10.1016/j.softx.2016.12.004
    Pujades, L. G., A. Ugalde, J. A. Canas, M. Navarro, F. J. Badal, and V. Corchete (1997). Intrinsic and scattering attenuation from observed seismic codas in the Almeria Basin (southeastern Iberian peninsula), Geophys. J. Int. 129, 281–291.
    P-Alert Strong Motion Network。From https://palert.earth.sinica.edu.tw/showallpalert.php (July.13,2022)
    Rebollar, C. J., C. Traslosheros, and R. Alvarez (1985). Estimates of seismic wave attenuation in northern Baja California, Bull. Seismol. Soc. Am. 75, 1371–1382.
    Sanders, C., Ponko, S., Nixon, L., & Schwartz, E. (1995). Seismological evidence for magmatic and hydrothermal structure in Long Valley caldera from local earthquake attenuation and velocity tomography. Journal of Geophysical Research: Solid Earth, 100(B5), 8311-8326.
    Sarker, G., and G. A. Abers (1998). Comparison of seismic body wave and coda wave measures of Q, Pure App. Geophys. 153, 665–683.
    Sato, H. (1977). Energy propagation including scattering effect: Single isotropic scattering approximation, J. Phys. Earth 25, 27–41.
    Sato, H., Fehler, M.C. (1998): Seismic Wave Propagation and Scattering in the Heterogeneous Earth. Springer- Verlag, New York, pp. 308.
    Schurr, B., Asch, G., Rietbrock, A., Trumbull, R., & Haberland, C. (2003). Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth and Planetary Science Letters, 215(1-2), 105-119.
    Shan, Y., Nie, G., Ni, Y., & Chang, C.-P. (2014). Structural analysis of a newly emerged accretionary prism along the Jinlun-Taimali coast, southeastern Taiwan: From subduction to arc-continent collision. Journal of Structural Geology, 66, 248-260.
    Stachnik, J. C., Abers, G. A., & Christensen, D. H. (2004). Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. Journal of Geophysical Research: Solid Earth, 109(B10).
    Tsumura, K. (1967). Determination of earthquake magnitude from total duration of oscillation. Bull. Earthquake Res. Inst., Tokyo Univ, 45(7), 18.
    Tusa, G., & Gresta, S. (2008). Frequency-Dependent Attenuation of P Waves and Estimation of Earthquake Source Parameters in Southeastern Sicily, Italy [2772-2794].
    Walter, W. R., Mayeda, K., Malagnini, L., & Scognamiglio, L. (2007). Regional body‐wave attenuation using a coda source normalization method: Application to MEDNET records of earthquakes in Italy. Geophysical Research Letters, 34(10).
    WANG, C.Y. (1988). Calculations of QS and QP using the spectral ratio method in the Taiwan area. Paper presented at the Proc. Geol. Soc. China.
    Wu, H., & Lees, J. M. (1996). Attenuation structure of Coso geothermal area, California, from wave pulse widths. Bulletin of the Seismological Society of America, 86(5), 1574-1590.
    Wu, Y. M., and H. Kanamori (2005a). Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves, Bull. Seism. Soc. Am 95, 1181-1185.
    Yoshimoto, K., Sato, H., Iio, Y., Ito, H., Ohminato, T., & Ohtake, M. (1998). Frequency-dependent attenuation of high-frequency P and S waves in the upper crust in western Nagano, Japan. In Q of the Earth: Global, Regional, and Laboratory Studies (pp. 489-502): Springer.
    Zhang, F., & Papageorgiou, A. S. (2010). Attenuation characteristics of Taiwan: Estimation of coda Q, S-wave Q, scattering Q, intrinsic Q, and scattering coefficient. Seismological Research Letters, 81(5), 769-777.
    三聯科技(2008)。Palert地震P波感測儀。檢自http://www.sanlien.com.tw。
    工研院能資所(2008)。台灣地熱資料探勘彙編,經濟部能源會,1994。
    工研院能資所(2005)。溫泉資源永續利用前瞻性技術研究(2/3),經濟部水利署。
    中央地質調查所(2014)。溫泉站點紀錄,經濟部。
    王郁如(2010)。台灣地殼及頂部地函三維 P 波, S 波衰減模型對於造山帶構造特性與機制之探討。國立中央大學地球物理研究所,博士論文。
    何春蓀(1986)。台灣地質概論,經濟部中央地質調查所,P11-100。
    呂玉菀(2004)。使用震源機制逆推台灣地區應力分區狀況. 國立中央大學。
    宋聖榮 & 劉佳玫(2003)。台灣的溫泉(Vol. 23):遠足文化事業有限公司。
    宋聖榮(2021)。〈台灣的地熱資源與分布〉。《CASE報科學》,網址:https://case.ntu.edu.tw/blog/?p=36112。取用日期:2022年5月25日。
    沈聖書(1996)。由波形逆推地震震源機制解探討台灣東北外海隱沒與碰撞構造之特性,國立中央大學地球物理研究所碩士論文,共177頁。
    郭俊彥(2012)。應用尾波歸一化對雲嘉南地區 Q 值的研究。中正大學地球與環境科學系地震研究所學位論文, 1-36。
    陳愷(2021)。臺東地區變質岩帶的地熱發展潛勢。國立臺灣海洋大學地球科學研究所碩士論文,基隆市。
    劉佳玫(2011)。台灣造山帶二氧化矽地表熱流分布及其隱示。臺灣大學地質科學研究所學位論文, 1-138。
    羅俊亞(2012)。1999 年嘉義地震序列震源頻譜, Q 值與場址效應之探討。

    下載圖示 校內:2024-07-21公開
    校外:2024-07-21公開
    QR CODE