| 研究生: |
王嘉立 Wang, Chia-Li |
|---|---|
| 論文名稱: |
應用實驗設計法於微凹塗佈之參數設計最佳化 Optimization of Parameters in Micro-Gravure Coating Process by Using Design of Experiments |
| 指導教授: |
謝中奇
Hsieh, Chung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 卷對卷生產 、微凹塗佈 、田口內外直交表 、反應曲面法 |
| 外文關鍵詞: | Roll-to-Roll, Micro-gravure Coating, Taguchi's Method, Response Surface Method |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣的高分子薄膜加工,於早期60年代開始使用PVC、PE、PET等基材薄膜,主要應用於包裝、文具、膠帶等日常用品。在光學膜的應用領域上,則開始於70年代汽車隔熱紙,之後在90年代LCD產業需求上出現前所未有的大量應用,舉凡導光膜、擴散膜、增亮膜、偏光板、廣視角膜等等。而高分子薄膜加工最主要仰賴卷對卷設備,其優勢為連續性大面積塗佈生產,可以提高生產量能並大幅降低成本。在2010年以來,伴隨著智慧科技如軟性電子的發展,對塗佈加工產品的規格要求日益嚴苛,甚至要求極度薄化,本研究個案公司主要以卷對卷生產光學膜產品為主,採用可進行超薄塗層的微凹塗佈技術進行生產,然而在過往的生產經驗中,並無法有效且確實的控制塗層厚度,將造成開線生產不順,產品品質異常等狀況。為了改善此問題,本研究將利用田口內外直交表進行微凹塗佈之穩健參數設計,內直交表放置控制因子,外直交表放置干擾因子,藉以找出最接近目標值,卻受環境影響最小之因子組合。在找到關鍵因子後,考量田口方法之因子水準並非最為接近目標值的結果,因此我們可透過使用反應曲面法來建立一個最佳化實驗,首先以關鍵因子建立一階反應模型,檢驗模型曲率效果,當效果不明顯時需增加最陡上升(下降)實驗,來逐步找出最佳反應區域;直到曲率效果顯著後,再以擴充實驗建立二階反應模型,進而透過該模型預測出反應值最佳化的水準。最後,為證明本研究的有效性與實用性,將比較個案公司以經驗法則所設立的原條件塗佈結果,並以製程綜合能力指標來同時衡量原條件與最佳化條件之間的差異,其結果可作為後續製程調機參考。
The high-poly film processing in Taiwan began in the early 1960s with PVC, PE, PET and other substrate films, mainly used in packaging, stationery, tapes and other daily necessities. In the field of optical film applications, it started in the 1970s with thermal insulation paper for automobiles. Then, in the 1990s, the LCD industry saw an unprecedented number of applications, such as light guide films, diffusion films, brightening films, polarizing films, wide view films, etc. Since 2010, with the development of smart technologies such as flexible electronics, the specifications for coating and processing products have become increasingly stringent, and even require extreme thinning. In this research, the company mainly produces optical film on a roll-to-roll processing and uses micro-gravure coating technology for ultra-thin coating. However, in the past, the thickness of the coating layer could not be controlled effectively and reliably, which resulted in poor production start-up and abnormal product quality. In order to improve this problem, this research will design experiments with orthogonal arrays to carry out robust parameter design of micro-gravure coating. The controllable factors are placed in the inner array, and the noise factors are placed in the outer array, to find the significance factors combination that is very closest to the target response (thickness) but have less sensitive to environment interference. After finding the key factors, we considered that the factor level of Taguchi's method was not the result closest to the target value, so we established an optimization experiment by using the response surface method. First, a first order model is established with key factors which find from Taguchi's method, then test the curvature of model. If test is not significant, the steepest ascent (descent) experiment should be built to gradually find the optimal response region. After the curvature is significant, the second order response model is developed by extension experiments, and the model is used to predict the optimal level of response that is closest to the target value. Finally, in order to understand the validity and applicability of this study, we compare the thickness with process capability index (Cpk) using the optimized parameters and the original parameters. The result and analysis can be used as a reference for finding good process conditions.
中文文獻
方登進 (2006)。應用六標準差於框膠製程最佳化改善手法之研究。國立成功大學工業與資訊管理學系碩士在職專班。
王連任 (2019)。多層塗佈技術與紫外線光固化印刷技術應用於消費性電子產品保護貼之研究-以Apple MacBook機身貼設計為例。中華印刷科技年報。頁41-84。
吳泰元 (2020)。應用田口實驗設計改善玻璃薄化厚度均勻性以 TFT 玻璃薄化製程為例。國立清華大學工業工程與工程管理研究所碩士論文。
吳宏達 (2015)。結合田口與多屬性決策法求解多重品質特性之穩健設計-以鋰電池銲接製程為例。國立成功大學工程管理碩士在職專班。
林志良 (2009)。晶圓切割製程的穩健設計-六標準差與田口實驗設計的應用。國立高雄應用科技大學工業工程與管理系碩士論文。
胡翔註 (2009)。凹槽形狀對塗佈之詳細分析。國立清華大學化學工程研究所。
馬郁淇 (2006)。運用田口方法與DFP法於參數設計最佳化-以機構件射出成形製程為例。中華大學科技管理研究所碩士論文。
陳燕儀、呂世源 (2007)。光學膜-光的魔術師。科學發展月刊。頁62-67。
陳帝鴻 (2010)。吃軟不吃硬的新顯學-軟性電子。工業技術與資訊, 230,頁32-41。
莊惠凱 (2007)。凹版印刷式塗佈轉移率之研究。國立清華大學化學工程研究所。
許世川 (2019)。光學膜製造之精進(上) 。工業材料。頁130-136。
曾世豪 (2005)。凹版刮刀角度對印刷品質的影響。國立臺灣藝術大學應用媒體藝術研究所。
黃士滔、傅和彥 (2004)。品質管理觀念-理論與方法。臺北:前程出版股份有限公司。
溫恕恒 (2011)。精密塗佈技術與應用。工業材料。頁56-62。
黎正中、陳源樹 (2006)。實驗設計與分析(初版),新北市:高立圖書有限公司。
劉大佼 (2007)。塗佈加工技術。科學發展。頁63-67。
顏友理 (2016)。改善凹版印刷轉印之研究。國立清華大學動力機械工程研究所碩士論文,頁1-76。
蘇孟宗 (2019)。2030年台灣智慧生活情境與科技應用發展。IEK產業情報網。
蘇孟宗、黃曼君、高雅姿、陳志強 (2013)。逆轉勝-臺灣先進製造的新動力(初版),新竹縣竹東鎮:工業技術研究院產業經濟與趨勢研究中心。
蘇朝墩 (2009)。六標準差。新北市:前程文化。
蘇朝墩 (2013)。品質工程:線外方法與應用(初版)。新北市:前程文化。
鍾慶達、何俊明、連志偉 (2016)。六標準差案例研討:金手指凸起批退率改善。品質學報。23(4)。頁215-227。
英文文獻
Almeida, F., Gomes, G. F., Paula, V., Correa, J. E., Paiva, A., Gomes, J., & Turrioni, J. B. (2018). A weighted mean square error approach to the robust optimization of the surface roughness in an AISI 12L14 free-machining steel-turning process. Journal of Mechanical Engineering, 64(3), 147-156.
Benkreira, H., & Cohu, O. (1998). Direct forward gravure coating on unsupported web. Chemical Engineering Science, 53(6), 1223-1231.
Benkreira, H., & Patel, R. (1993). Direct gravure roll coating. Chemical Engineering Science, 48(12), 2329-2335.
Bingham, D., & Nair, V. N. (2012). Noise variable settings in robust design experiments. Technometrics, 54(4), 388-397.
Box, G. E., & Draper, N. R. (1987). Empirical Model-building and Response Surfaces: John Wiley & Sons.
Box, G. E., & Hunter, J. S. (1957). Multi-factor experimental designs for exploring response surfaces. The Annals of Mathematical Statistics, 195-241.
Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219.
Draper, N. R. (1992). Introduction to Box and Wilson (1951) on the experimental attainment of optimum conditions. Breakthroughs in Statistics (pp. 267-269): Springer.
Hanumanthu, R. (1999). Variation of gravure coating thickness during early stages of doctor blade wear. AIChE Journal, 45(12), 2487-2494.
Hrehorova, E., Rebros, M., Pekarovicova, A., Bazuin, B., Ranganathan, A., Garner, S., . . . Boudreau, R. (2011). Gravure printing of conductive inks on glass substrates for applications in printed electronics. Journal of Display Technology, 7(6), 318-324.
Hwang, J. K., Bae, S., & Kim, D. S. (2014). A development and evaluation of micro-gravure coater for printed electronics. Japanese Journal of Applied Physics, 53(5S3).
Islam, M. N., & Pramanik, A. (2016). Comparison of design of experiments via traditional and Taguchi method. Journal of Advanced Manufacturing Systems, 15(03), 151-160.
Joyce, A. P., & Leung, S. S. (2013). Use of response surface methods and path of steepest ascent to optimize ligand-binding assay sensitivity. Journal of Immunological Methods, 392(1-2), 12-23.
Kapur, N. (2003). A parametric study of direct gravure coating. Chemical Engineering Science, 58(13), 2875-2882.
Kapur, N., Hewson, R., Sleigh, P., Summers, J., Thompson, H., & Abbott, S. (2011). A review of gravure coating systems. Convertech & E-Print, 1(4), 56-60.
Kackar, R. N., & Shoemaker, A. C. (1986). Robust design: a cost-effective method for improving manufacturing processes. AT&T Technical Journal, 65(2), 39-50.
Kiani, M. (2017). The augmentation of existing data for improving the path of steepest ascent. Communications in Statistics-Theory and Methods, 46(5), 2506-2518.
Kwon, K.-S., & Lin, R.-M. (2005). Robust damage location in structures using Taguchi method. Journal of Structural Engineering, 131(4), 629-642.
Logothetidis, S., Georgiou, D., Laskarakis, A., Koidis, C., & Kalfagiannis, N. (2013). Solar Energy Materials and Solar Cells. 112(5), 144-156.
Mauger, S. A., Neyerlin, K., Yang-Neyerlin, A. C., More, K. L., & Ulsh, M. (2018). Gravure coating for roll-to-roll manufacturing of proton-exchange-membrane fuel cell catalyst layers. Journal of the Electrochemical Society, 165(11), F1012.
Montgomery, D. C. (2017). Design and Analysis of Experiments.New Jersy: John Wiley & Sons.
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments: John Wiley & Sons.
Nguyen, H. A. D., Lee, C., & Shin, K.-H. (2017). Approach to optimizing printed conductive lines in high-resolution roll-to-roll gravure printing. Robotics and Computer-Integrated Manufacturing, 46, 122-129.
Palavesam, N., Marin, S., Hemmetzberger, D., Landesberger, C., Bock, K., & Kutter, C. (2018). Roll-to-roll processing of film substrates for hybrid integrated flexible electronics. Flexible and Printed Electronics, 3(1).
Pander, A., Hatta, A., & Furuta, H. (2016). Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method. Applied Surface Science, 371, 425-435.
Park, H. J., & Park, S. H. (2010). Extension of central composite design for second-order response surface model building. Communications in Statistics—Theory and Methods, 39(7), 1202-1211.
Phadke, M. S. (1995). Quality Engineering Using Robust Design: Prentice Hall PTR.
Schwartz, L., Moussallp, P., Campbell, P., & Eley, R. (1998). Numerical modelling of liquid withdrawal from gravure cavities in coating operations. Chemical Engineering Research and Design, 76(1), 22-28.
Schwartz, L. W. (2002). Numerical modeling of liquid withdrawal from gravure cavities in coating operations; the effect of cell pattern. Journal of Engineering Mathematics, 42(3), 243-253.
Shin, D., Lee, S. M., & Yun, I. (2016). Effect of process parameters on hard coating film characteristics in roll-to-roll printing process system. International Conference on Electronics Packaging, 141-144.
Stevens, N. T., & Anderson-Cook, C. M. (2019). Design and analysis of confirmation experiments. Journal of Quality Technology, 51(2), 109-124.
Sutanto, E., & Alleyne, A. (2015). A semi-continuous Roll-to-Roll (R2R) electrohydrodynamic jet printing system. Mechatronics, 31(10), 243-254.
Taguchi, G., Chowdhury, S., Wu, Y., Taguchi, S., & Yano, H. (2005). Taguchi's Quality Engineering Handbook: Wiley-Interscience.
Tjiptowidjojo, K., Hariprasad, D. S., & Schunk, P. R. (2018). Effect of blade-tip shape on the doctoring step in gravure printing processes. Journal of Coatings Technology and Research, 15(5), 983-992.
Wang, B., Fu, X., Song, S., Chu, H. O., Gibson, D., Li, C., Shi,Y., & Wu, Z. (2018). Simulation and optimization of film thickness uniformity in physical vapor deposition. Coatings, 8(9), 325.
Weber, S., Klier, J., Ellrich, F., Paustian, S., Güttler, N., Tiedje, O., Jonuscheit, J., & Freymann, G. (2017). Thickness determination of wet coatings using self-calibration method. 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz).
Wright, P. A. (1995). A process capability index sensitive to skewness. Journal of Statistical Computation and Simulation, 52(3), 195-203.
Yang, K., Teo, E.-C., & Fuss, F. K. (2007). Application of Taguchi method in optimization of cervical ring cage. Journal of Biomechanics, 40(14), 3251-3256.
校內:2028-01-16公開