簡易檢索 / 詳目顯示

研究生: 陳翠亭
Chen, Tsui-Ting
論文名稱: 主鏈含電子傳遞Tiophene衍生物之共聚芴的合成與光電性質
Synthesis and Optoelectronic Properties of Copolyfluorenes Doped with Electron-Transporting Thiophene Derivative
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 112
中文關鍵詞: 共軛導電高分子共聚芴
外文關鍵詞: Conjugated polymer, Copolyfluorene
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以共軛高分子為主的高分子發光二極體(Polymer Light Emitting Diode, PLED) 已經被科學家廣泛的研究,藉由從陽極、陰極注入的電洞及電子在發光層中再結合,進而發出不同的光色,因此電荷的注入及傳遞速率之平衡對發光效率有非常大之影響。聚芴為良好電洞傳遞材料,然而對電子、電洞傳送速率不平衡,導致元件發光效率不高。
    本研究利用Suzuki聚合反應合成一系列主鏈含電子傳遞性噻吩(thiophene)衍生物(GM)之聚芴高分子作為黃綠光發光材料。探討隨著GM的含量不同,對高分子的熱性質、光學性質、電化學性質、成膜表面性質與元件效能有何差異。這些高分子可溶於一般有機溶劑,如甲苯、氯仿等,並且具有大於410°C的熱裂解溫度(Td)及大於94℃玻璃轉移溫度(Tg)。光學性質方面,PF~P5薄膜態的最大UV/Vis 吸收在385 nm;薄膜態螢光光譜(PL)上出現兩個發光峰(425 nm、535 nm),隨著主鏈中GM含量提高,能量轉移由芴單元到GM單元的程度就越大。在電化學性質方面,利用氧化和還原起始電位分別求出GM及高分子HOMO和LUMO能階,GM擁有較小的能階而在高分子鏈中變成載子捕捉中心。PF~P5高分子膜的表面粗糙度隨著主鏈中GM含量減少逐漸下降,約1.24~1.83 nm。元件方面探討GM含量對元件效能有何差異,元件結構為[ITO/PEDOT:PSS/polymer/Ca(50nm)/Al(100nm)]。PF~P5雙層元件大亮度分別為1310 cd/m2、5230 cd/m2、3530 cd/m2、2610 cd/m2、2000 cd/m2,,最大電流效率分別為 0.18 cd/A、0.65 cd/A、0.43 cd/A、0.44 cd/A、0.48 cd/A,且元件發光顏色隨著共聚比例不同而改變,隨著共聚比例增加,C.I.E.色度座標由(0.17, 0.15)位移至(0.35,0.52)。此外將P5以不同比例 (w/w = 5/1、10/1、15/1 ) 掺混至PF製作成雙層元件,最大亮度分別為 2730 cd/m2、1730 cd/m2、1300 cd/m2,電流效率(cd/A)分別為 0.49 cd/A、0.36 cd/A、0.27 cd/A,其中PF/P5(w/w = 10/1)的光色(0.26, 0.32)最接近白光(0.33, 0.33)。

    A series of copolyfluorenes doped with electron-transporting thiophene derivative, 2,5-bis(2-phenyl-2-cyanovinyl)thiophene (GM) were synthesized by the Suzuki coupling reaction. They were characterized by GPC, 1H NMR, elemental analysis, DSC, TGA, optical spectra, cyclic voltammetry, and AFM. Imbalance in carriers injection and charge mobility in polyfluorene leads to low efficiency in its polymeric light-emitting diodes (PLEDs). In order to achieve balanced charges injection, copolyfluorenes containing electron transporting unit (GM) (0.5~5 mole%) in backbone were synthesized and their opotoelectronic characteristic investigated. They exhibited good thermal stability (Td > 410℃) and glass transition temperatures (Tg > 94℃). In film state, the photoluminescence (PL) peaks were situated at 425 nm and 535 nm , which were attributed to fluorene and GM segment, respectively. The peak intensity at 535 nm increased with an increase in chromophore (GM) content. In addition, the GM unit act as charge trapping site because of its smaller band gap (2.21 eV), and it's indicated that charge trapping is another emission mechanism in EL process. The surface roughness of the coployfluorene films increased from 1.24 nm to 1.83 nm when the content of GM units were increased. Electroluminescent devices, ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm), were fabricated to investigate the influence of GM contents on emission characteristics. The maximum brightness and current efficiency of the P05 device (5230 cd/m2, 0.65 cd/A) transcended those of the PF device (1310 cd/m2, 0.18 cd/A). Furthermore, blend of PF and P5 (w/w = 5/1, 10/1, and 15/1)were used as emission layer for device fabrication. The EL emission of blend device with PF/P5 = 10/1 exhibited white electroluminescence with CIE coordinate being (0.26, 0.32), which appears to be near-white to the naked eye.

    目錄 中文摘要 ..I 英文摘要 II 謝誌 III 目錄 IV 流程目錄 VII 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 理論基礎 4 1-2-1 共軛導電高分子 4 1-2-2 螢光理論 6 1-2-3 影響螢光強度的因素 8 1-3 元件發光原理及結構 9 1-3-1 發光原理 10 1-3-2 單層元件 11 1-3-3 多層元件 12 1-3-4 影響PLED發光效率的因素 14 1-4 有機發光二極體未來研究方向 15 參考文獻 17 第二章 文獻回顧 18 2-1 前言 18 2-2 高分子有機電激發光材料 18 2-2-1高分子有機電激發光材料的分類 18 2-2-2 共軛高分子 19 2-3 能量轉移 19 2-4 聚芴(Polyfluorene) 21 2-5 Fluorene-Thiophene共聚高分子 25 2-6 研究動機 34 參考文獻 36 第三章 實驗內容 40 3-1 實驗裝置與設備 40 3-2 鑑定儀器 41 3-3 物性及光電特性測量儀器 42 3-4 藥品及材料 46 3-5 合成步驟與鑑定結果 48 3-5-1 單體合成(Scheme 3-1): 49 3-5-2 高分子合成(Scheme 3-2): 50 3-6 聚合反應原理 52 3-6-1 有機金屬觸媒 52 3-6-2 Suzuki cross-coupling 52 3-7 光學量測 54 3-7-1 光學性質量側 54 3-7-2 量子效率測定 54 3-8 循環伏安法 55 3-9 元件製作 57 3-9-1 ITO玻璃之清洗 57 3-9-2 電洞注入層和高分子發光膜的製作 58 3-9-3 陰極蒸鍍 58 3-9-4 元件量測 59 參考文獻 61 第四章 結果與討論 62 4-1 單體與高分子結構之合成與鑑定 62 4-1-1紅外光譜(FT-IR) 63 4-1-2核磁共振光譜(NMR) 63 4-1-3元素分析儀(EA) 64 4-2 高分子分子量的測定 77 4-3高分子熱性質分析 77 4-3-1 熱重分析 78 4-3-2 微差式掃描熱卡計分析 78 4-4 光學性質.. 81 4-4-1 單體在溶液中的光學性質 81 4-4-2 高分子在溶液中及薄膜態的光學性質 81 4-4-2-1 UV/Vis 吸收光譜 81 4-4-2-1 螢光光譜分析(Photoluminescence Spectra) 82 4-5 相對量子效率 88 4-6 電化學性質探討 89 4-7 高分子發光二極體(PLED)的元件特性及成膜特性 95 4-7-1電流密度(J)-電壓(V)-亮度(L)特性 96 4-7-2電激發光光譜(Electroluminescence spectra) 98 參考文獻 108 第五章 結論 109

    第一章 參考文獻
    [1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
    [2] C. W. Tang, S. A.Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
    [3] J. H. Burroughes, D. D. C. Bradly, A. R Brovn, R. N. Morks, K. Mackay, R. H. Friend, P. L. Burmond, A. B. Holmes, Nature., 374, 539 (1990).
    [4] 段啟聖,化工資訊與商情,第26期,P.40,民國94年8月.
    [5] 郭昭輝,塑膠資訊雜誌,民國91年10月.
    [6] D. A. Skoog, E. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th edition, Saunders College Publishing (1997).
    [7] 黃孝文, 陳雲,化工資訊月刊,第15卷第3期,P.8,2001.
    [8] 葉昆明,陳雲,科學發展,第385期,P.58,2005年1月.
    [9] 陳信宏,陳雲,中工高雄會刊,第3期,P.72,2006年.
    [10] 楊素華,光訊雜誌,第98 期,P.29,2002 年10 月.
    [11] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature., 409, 494 (2001).
    [12] 陳金鑫,光訊雜誌,第65期,P.12,民86年4月.

    第二章 參考文獻
    [1] J. H. Burroughes, D. D. C. Bradly, A. R. Brovn, R. N. Morks, K. Mackay, R. H. Friend, P. L. Burmond, A. B. Holmes, Nature, 374, 539. (1990)
    [2] J. L. Segura, Acta Polym., 49, 319 (1998).
    [3] J. J. M. Halls, C. A. Walsh, N. C. Greenham, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, Nature., 376, 498 (1995).
    [4] Y. Yang, A. J. Hegger, Nature., 374, 539 (1990).
    [5] H. A. M. van Mullekom, J. A. J. M. Vekemans, E. E. Havinga, E. W. Meijer, Mater. Sci. Eng ., 32, 1 (2001).
    [6] J. S. Gmeiner, M. M Karg,, W. P. Rieß, M. S. Strohriegl, Acta. Polym., 44, 201 (1993).
    [7] G. Gustafsson, Y. Cao, G. M. Treacy, N. C. Klavetter, A. J. Hegger, Nature., 357, 477 (1992).
    [8] Y. H. Kim, D. C. Shin, H. You, S. K. Kwon, Polymer, 46, 7969 (2005).
    [9] F. Wang, J. Luo, J. W. Chen, F. Huang, Y. Cao, Polymer, 46, 8422 (2005).
    [10] W. C. Wu, C. L. Liu, W. C. Chen, Polymer, 47, 527 (2006).
    [11] Y. Yang, Q. Pei, A. J. Heeger, J Appl Phys; 79, 934 (1996).
    [12] U. Scherf, E. J. W. List, Adv Mater., 14, 477 (2002).
    [13] E. J. W. List, R. Guentne, P. S. Freitas, U. Scherf, Adv Mater, 14, 374 (2002).
    [14] G. Hughes, M. R. Bryce, J. Mater. Chem., 15, 94 (2005).
    [15] P. A. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, J. Mater. Chem., 16, 4556 (2004).
    [16] M. Sun, Q. Niu, R. Yang, B. Du, R. Liu, W. Yang, J. Peng, Y. Cao, European Polymer Journal, 43, 1916 (2007).
    [17] C. Liu, W. L. Yu, Y. H. Lai, W. Huang, Chem. Mater., 13, 984, (2001).
    [18] N. S. Cho, D.-H. Hwang, J.-I. Lee, B.-J. Jung, H.-K. Shim, Macromolecules, 35, 1224 (2002).
    [19] S. G. Jin, S. Y. Kang, M. Y. Kim, Y. U. Chan, Macromolecules, 36, 3841 (2003)
    [20] I. D. L. Albert, T. J. Marks, M. A. Ratner, J. Am. Chem. Soc., 119, 6575 (1997).
    [21] N. Yu, R. Zhu, B. Peng, W. Huang, W. Wei, J. Appl. Polym. Sci., 108, 2438 (2008).
    [22] M. R. Andersson, M. Berggren, O. Inganäs, G. Gustafsson, J. C. Gustafsson-Carlberg, D. Selse, T. Hjertberg, O. Wennerstrom, Macromolecules, 28, 7525 (1995).
    [23] G. Tourillon, in: T.J. Skotheim _Ed., Handbook of Conducting Polymers, Vol. 1, Marcel Dekker, New York, 1986, 293.
    [24] J. Roncali, Chem. Rev., 92, 711, (1992).
    [25] J. Roncali, Chem. Rev., 97, 173 (1997).
    [26] R. D. McCullough, Adv. Mater., 10, 93 (1998).
    [27] H. D. Burrows, J. S. D. Melo, C. Serpa, L. G. Arnaut, A. P. Monkman, I. Hamblett, S. Navaratnam, J. Chem. Phys., 115, 9601 (2001).
    [28] M. Theander, M. R. Anderson, O. Inganas, Synth. Met., 101, 331 (1999).
    [29] M. Theander, W. Mammo, T. Olinga, M. Svensson, M. R. Andersson, O. Inganäs, J. Phys. Chem. B, 103, 7771 (1999).
    [30] M. Berggren, G. Gustafsson, O. Inganäs, M. R. Andersson, O. Wennerstrom, T. Hjertberg, Adv. Mater., 6, 488 (1994).
    [31] H. D. Burrows, J. S. D. Melo, C. Serpa, L. G. Arnaut, M. da, G. Miguel, A. P. Monkman, I. Hamblett, S. Navaratnam, Chem. Phys., 285, 3 (2002).
    [32] C. Rothe, S. Hintschich, A. P. Monkman, M. Svensson, M. R. Anderson, J. Chem. Phys., 116, 10503 (2002).
    [33] A. P. Monkman, H. D. Burrows, L. J. Hartwell, I. Hamblett, S. Navaratnam, Phys. Rev. Lett., 86, 1358 (2001).
    [34] A. P. Monkman, H. D. Burrows, I. Hamblett, S. Navarathnam, M. Svensson, M. R. Andersson, J. Chem. Phys., 115, 9046 (2001).
    [35] O. Inganäs, T. Granlund, M. Theander, M. Berggren, M. R. Andersson, A. Ruseckas, V. Sundström, Opt. Mater. NY, 9, 104 (1998).
    [36] T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, V. Sundstrom, G. Bjork, M. Granstrom, O. Inganäs, Chem. Phys. Lett., 288, 879 (1998).
    [37] J. Pei, W.-L. Yu, W. Huang, A. J. Heeger, Macromolecules, 33, 2462 (2000).
    [38] J. Pei, W.-L. Yu, W. Huang, A. J. Heeger, Chem. Commun., 1631 (2000).
    [39] B. Liu, Y. H. Niu, W.-L. Yu, Y. Cao, W. Huang, Synth. Met., 129, 129 (2002).
    [40] B. Pal, W.-C. Yen, J.-S. Yang, W.-F. Su, Macromolecules, 40, 23 (2007).
    [41] S. Janietz, D. D. C. Bradley, M. Grell, C. Giebeler, M. Inbasekaran, E. P. Woo, Appl. Phys. Lett., 73, 6217 (1998).
    [42] C. Xue, F.-T. Luo, Synth. Met., 145, 67 (2004).
    [43] H. Eckhardt, L.W. Shacklette, K.Y. Jen, R. L. Elsenbaumer, J. Chem. Phys., 91, 1303 (1989).
    [44] J. Lee, N. S. Cho, J. Lee, S. K. Lee, H.-K. Shim, Synth. Met., 155, 73 (2005).
    [45] M.-J. Park, J. Lee, I. H. Jung, J.-H. Park, D.-H. Hwang, H.-K. Shim, Macromolecules, 41, 9643 (2008).
    [46] B.-Y. Hsieh, Y. Chen, Polym. Sci. Part. A: Polym. Chem., 47, 833 (2009).
    [47] Y. Zhou, Q. Sun, Z. Tan, H. Zhong, C. Yang, Y. Li, J. Phys. Chem. C, 111, 6862 (2007).
    [48] U. Lemmer, S. Heun, R. F. Mahrt, U. Sgherf, M. Hopmeier, U. Siegner, E. O. Gobel, K. Mullen, H. Bassler, Chem. Phy. Lett., 240, 373 (1995).
    [49] V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Klarner, R. D. Miller, D. C. Miller, Macromolecules, 32, 361 (1999).
    [50] G. Zeng, W.-L. Yu, S.-J. Chua, Huang, W. Macromolecules, 35, 6907 (2002).

    第三章 參考文獻
    [1] J. F. Rusling, S. L. Suib, Adv. Mater., 6, 922 (1994).
    [2] N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun., 11, 513 (1981).
    [3] S. Janietz, D. Bradley, M. Grell, M. Inbasekaran, E. P. Woo, Appl. Phys. Lett., 73, 2453 (1998).
    [4] N. Miyaura, A. Suzuki, Chem. Rev., 95, 2457 (1995).
    [5] N. Miyaura, K. Yamada, H. Suginome, A. Suzuki, J. Am. Chem. Soc., 107, 972 (1985).
    [6] A. R. Martin, Y. Yang, Acta Chem. Scand., 47,221 (1993).

    第四章參考文獻
    [1] 王宗櫚、謝達華、何國賢, “聚合物的合成與鑑定法”, (1995).
    [2] N.Dieter, J. Macro. Rap. Comm., 22, 1365 (2001).
    [3] N. S. Cho, D.-H. Hwang, J.-I. Lee, B.-J. Jung, H.-K. Shim, Macromolecules, 35, 1224 (2002).
    [4] S. Panozzo, Y. Vial, O. Stephan, J. Appl. Phys., 92, 3495 (2002).
    [5] M.-J. Park, J. Lee, I. H. Jung, J.-H. Park, D.-H. Hwang, H.-K. Shim, Macromolecules, 41, 9643 (2008).
    [6] P. Herguth, X. Jiang, M. S. Liu, A. K. Y. Jen, Macromolecules, 35, 6094 (2002).
    [7] S. Janietz, D. D. C. Bradley, M. Grell, C. Giebeler, M. Inbasekaran, E. P. Woo, Appl. Phys. Lett., , 73, 6217 (1998).
    [8] H. Eckhardt, L.W. Shacklette, K.Y. Jen, R. L. Elsenbaumer, J. Chem. Phys., 91, 1303 (1989).
    [9] “Taiwan-US-Canada Sci-Tech Newsbrief “, 10, No.4 (2002)
    [10] 陳金鑫; 黃孝文 “有機電激發光材料與元件”, 五南, 2005
    [11] M. M. Alam, C. J. Tonzola, S. A. Jenekhe, Macromolecules, , 36, 6577 (2003).
    [12] N. Ananthakrishnan, G. Padmanaban, S. Ramakrishnan, J. R. Reynolds, Macromolecules, 38, 7660 (2005).
    [13] B.-Y. Hsieh, Y. Chen, Polym. Sci. Part. A: Polym. Chem., 47, 833 (2009).

    下載圖示 校內:2010-07-16公開
    校外:2010-07-16公開
    QR CODE