簡易檢索 / 詳目顯示

研究生: 卓詠淳
Cho, Yung-Chun
論文名稱: 全方位反射鏡應用於磷化鋁銦鎵發光二極體亮度提升之研究
Output Power Enhancement of AlGaInP-Based LEDs by Omni-Directional Reflector
指導教授: 賴韋志
Lai, Wei-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 53
中文關鍵詞: 全方位反射鏡磷化鋁銦鎵發光二極體
外文關鍵詞: ODR, AlGaInP, LED
相關次數: 點閱:64下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要將全方位反射鏡(Omni-Directional reflector, ODR)製作於
    垂直式磷化鋁銦鎵發光二極體,利用光由密介質進入疏介質產生全反射
    原理,提升發光二極體的外部量子效率。
    全方位反射鏡(ODR)主要由二氧化矽(SiO2)、二氧化鈦(TiO2)和銀(Ag)
    所組成,我們設計了四種不同結構,分別從週期數的增加以及介電層與
    金屬層間附著層的改變,來分析兩者對於反射率的影響。首先,以光學
    模擬軟體Macleod 進行反射率模擬,初步得知,當光由垂直入射時,週
    期數越多,反射率越高,且反射光譜中的禁止帶(Stop Band)的邊界將越明
    顯;而在週期數固定下,氧化物附著層比金屬附著層的反射率高出約
    0.5%,當週期數增加時,兩者間的差距也隨之增加。
    接著,將上述四種結構做成元件,量測元件的各項光電特性,並且
    將測量的結果與模擬數值比較,發現附著層相同時,週期數越多,反射
    率越高;當週期數固定,改變附著層材料時,氧化物附著層較金屬附著
    層有較高的輸出功率,與模擬結果的趨勢相同。

    We demonstrate the application of internal reflection on increasing the
    external quantum efficiency of light emitting-diodes (LED). In this thesis, we
    employ Omni-Directional reflector (ODR) in vertical AlGaInP-based LED.
    And we successfully make enhancement of light output power.
    Omni-directional reflector (ODR) is made of alternating layers of SiO2,
    TiO2 and Ag. We exhibit four different structures of LEDs including various
    number of reflector pairs and adhesive layers, which is deposited between
    dielectric layer and metallic layer. At first, we utilize the simulation result of
    reflectance spectra by Macleod software. And it indicated that the reflectivity
    would be increased by increasing the number of reflector pairs, and the
    boundary of stop band will be obviously. In the same period, the output power
    of oxide adhesive layer is 0.5% higher than that of metal adhesive layer, and it
    would increase with the period.
    From the measure results, we find that in the same period, the reflectance
    spectra of oxide adhesive layer is higher than that of metal adhesive layer
    absolutely. And this agree with the consequence of simulation.

    摘要........................................................ I Abstract..................................................... II 誌謝...................................................... III 表目錄.................................................... VII 圖目錄................................................... VIII 第一章 序論.................................................. 1 1.1 前言................................................... 1 1.2 研究動機............................................... 2 參考文獻................................................... 4 第二章 文獻探討.............................................. 7 2.1 磷化鋁銦鎵的材料性質................................... 7 2.1.1 磊晶成長的方式...................................... 7 2.1.2 晶格匹配的問題...................................... 9 2.1.3 能隙的構造......................................... 10 2.2 發光二極體(Light Emitting Diodes;LEDs)原理............... 11 2.2.1 P-N 接面導通的原理.................................. 11 2.2.2 光萃取效率(Light Extraction Efficiency,LEE) .............. 12 V 2.3 布拉格反射鏡(Distributed Bragg Reflector, DBR)的工作原理.... 13 2.4 全方位反射鏡(Omni-Directional Reflector, ODR)的工作原理.... 16 參考文獻.................................................. 18 第三章 全方位反射鏡製作於垂直式磷化鋁銦鎵發光二極體之元件製程 及反射鏡結構模擬........................................... 20 3.1 全方位反射鏡的設計與模擬.............................. 20 3.2 垂直式磷化鋁銦鎵發光二極體之元件製程................... 26 3.2.1 P 型金屬電極(P-PAD) ................................. 27 3.2.2 爐管退火(Anneal) .................................... 28 3.2.3 布拉格反射鏡(Distributed Bragg Reflector, DBR)........... 28 3.2.4 化學濕蝕刻(Chemical Wet Etching) ...................... 28 3.2.5 氧化物/金屬附著層.................................. 29 3.2.6 金屬反射層(Metal reflector) ............................ 30 3.2.7 晶圓鍵結(Wafer bonding) .............................. 30 3.2.8 砷化鎵基板移除(GaAs Substrate Removed)................ 31 3.2.9 粗化表面(Surface Textured) ............................ 31 3.2.10 MESA 圖形定義.................................... 32 3.2.11 N 型金屬電極(N-PAD)................................ 32 參考文獻.................................................. 36 VI 第四章 實驗結果與討論....................................... 39 4.1 磷化鋁銦鎵之電特性分析................................ 39 4.2 磷化鋁銦鎵之光特性分析................................ 40 4.3 實驗結果分析.......................................... 41 參考文獻.................................................. 51 第五章 結論與未來方向....................................... 52 5.1 結論.................................................. 52 5.2 未來研究.............................................. 53

    [1] 黃達海,汪芷嫣 “ 能源與生活 ” 經濟部能源局, 2009.
    [2] T. Gessmann, E.F. Schubert, “High-efficiency AlGaInP light-emitting
    diodes for solid-state lighting applications” J. Appl. Phys., vol. 95,
    pp.2203-2216, 2004.
    [3] 郭浩中,賴芳儀,郭守義 “ LED 原理與應用 ” 五南圖書出版公司,
    2009.
    [4] I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, A. Scherer, “30%
    external quantum efficiency from surface textured, thin‐film lightemitting
    diodes” Appl. Phys. Lett., vol 63, pp2174-2176, 1993.
    [5] Boroditsky M, Yablonovitch E. “Light-emitting diode extraction
    efficiency” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the
    International Society for Optical Engineering, vol.3002, pp.119-22, 1997.
    [6] J. M. Hwang, W. H. Hung, and H. L. Hwang “Efficiency Enhancement
    of Light Extraction in LED With a Nano-Porous GaP Surface” IEEE
    Photonic Technology Lett., vol. 20, pp.608-610, 2008.
    [7] V.K. Malyutenko, S.S. Bolgov, A.N. Tykhonov, A.A. Vilisov, “Research
    on Performance of Red Vertical AlGaInP/GaAs Light-Emitting Diodes
    Influenced by Current Crowding” IEEE Photon. Technol. Lett., vol 23,pp 1745-1747, 2011.
    [8] Hideto Sugawara, Kazuhiko Itaya and Gen-ichi Hatakoshi “Hybrid-Type
    InGaAlP/GaAs Distributed Bragg Reflectors for InGaAlP Light-Emitting
    Diodes” Jpn. J. Appl. Phys., vol 33 ,pp. 6195-6198, 1994.
    [9] R-H Horng,T-M Wu, D-S Wuu, “Improved External Quantum
    Efficiency in AlGaInP-Based LEDs Using a Roughed Window Layer”, J.
    Electrochem. Soc., vol 155, pp. H710-H715, 2008.
    [10] Y.J. Lee, H.C. Kuo, S.C. Wang, T.C. Hsu, M.H. Hsieh, M.J. Jou, B.J.
    Lee, “Power Enhancement of GaN-Based Flip-Chip Light-Emitting
    Diodes with Triple Roughened Surfaces” IEEE Photon. Technol.
    Lett.,vol 17 ,pp. 04C115-1-3, 2005.
    [11] J. J. Chen, Y. K. Su, C. L. Lin and C. C. Kao “Light output improvement
    of AlGaInP-based LEDs with nano-mesh ZnO layers by nanosphere
    lithography” IEEE Photon. Technol. Lett., vol. 22, pp. 383-385, 2010.
    [12] Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee “Light-extraction
    enhancement of red AlGaInP light-emitting diodes with antireflective
    subwavelength structures” Optics Express, Vol. 17, Issue 23, pp.
    20991-20997, 2009.
    [13] Jae Won Seo , Hwa Sub Oh , Joon Seop Kwak “High-efficiency vertical AlGaInP light-emitting diodes with conductive omni-directional
    reflectors” Current Appl. Phys., Vol. 11, pp. S385-387, 2011.
    [1] K. Iga and S. Kinoshita, Process Technology for Semiconductor Lasers:
    Crystal Growth and Microprocesses, Springer-Verlag, Berlin, Germany,
    1996.
    [2] C. Y. Yeh, Z. W. Lu, S. Foryen, and A. Zunger,“Zinc-blende-wurtzite
    polytypism in semiconductors,” Physical Review B, Vol. 46, pp.
    10086-10097, 1992.
    [3] G. B. Stringfellow, and M. George Craford, High Brightness Light
    Emitting Diodes: Semiconductors and Semimetals Volume 48,Academic
    Press, San Diego, California, USA, 1997.
    [4] I. Vurgaftman, J. R. Mayer, and L. R. Ram-Mohan, “Band parameter for
    III-V compound semiconductors and their alloys,” Journal of Applied
    Physics, Vol. 89, pp. 5815-5875, 2001.
    [5] H. Sugawara and K. Itaya, “High brightness AlGaInP green
    light-emitting diodes,” Apply Physics Letters, Vol. 61, pp. 1775-1777,
    1992.
    [6] H. Sugawara, K. Itaya, and G. Hatakoshi, “Emission properties of
    AlGaInP visible light-emitting diodes employing a multiquantum-well
    active layer,” Japanese Journal of Applied Physics, Vol. 33, pp.5784-5787, 1994.
    [7] 史光國, “ 半導體發光二極體及固態照明 ” , 全華科技圖書股份
    有限公司, 2006.
    [8] 史光國, “ 現代半導體發光及雷射二極體材料技術 ” , 全華科技
    圖書股份有限公司, 2001.
    [9] E. Fred Schubert“Light-Emitting Diode”second edition, 2006.
    [10] 張郁妮, “砷化物850 nm 面射型半導體雷射與摻氮磷化鎵光學特性
    的研究 ” 國立彰化師範大學物理研究所碩士論文, 2002.
    [1] E. Fred Schubert, “Light-Emitting Diode,” second edition, 2006.
    [2] J. Yao, J. Shao, H. He, Z. Fan, “Effects of annealing on laser-induced
    damage threshold of TiO2/SiO2 high reflectors,” Appl. Surf. Sci. 253., pp
    8911–8914, 2007.
    [3] 李正中, “ 薄膜光學與鍍膜技術 ” , 藝軒圖書出版社, 2009.
    [4] B. Schineller, Y. Junas, M. Heuken, K. Heime, “Investigation of process
    technologies for the fabrication of AlGaInP mesa ultra high brightness
    light emitting diode,” Materials Science and Engineering: B.,vol. 51, pp.
    34-38, 1998.
    [5] Myung Sub Kim, Hee Kwan Lee and Jae Su Yu “Device characteristics
    and thermal analysis of AlGaInP-based red monolithic light-emitting
    diode arrays,” Semicond. Sci. Technol.,vol. 28, pp. 022001-029501,
    2013.
    [6] C. Y. Hu, Z. X. Qin, Z. X. Feng, Z. Z. Chen, Z. B. Ding, Z. J.Yang, T.
    J.Yu, X. D. Hu, S. D. Yao, G.Y. Zhang “Temperature dependent
    diffusion and epitaxial behavior of oxidized Au/Ni/p-GaN ohmic
    contact,” Materials Science and Engineering, vol. 128, pp 37-43, 2006.
    [7] J. M. Hwang, W. H. Hung, and H. L. Hwang “Efficiency Enhancement of Light Extraction in LED With a Nano-Porous GaP Surface” IEEE
    Photonic Technology Lett., vol. 20, pp. 608-610, 2008.
    [8] Teen-Hang Meen, Liang-Wen Ji, Wen-Ray Chen, Yin-Wei Chen,
    Teng-Zhen Chiu, “Applications of Different TiO2 Electrode Structures
    on Dye-Sensitized Solar Cell,” 科儀新知第二十八卷第五期, 2007.
    [9] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H.
    Chang, P. H. Liu, and K. C. Lin, “AlGaInP light-emitting diodes with
    mirror substrates fabricated by wafer bonding,” Appl. Phys. Lett., vol. 75,
    pp. 3054–3056, 1999.
    [10] G. B. Stringfellow, and M. George Craford, High Brightness Light
    Emitting Diodes: Semiconductors and Semimetals.,vol. 48, Academic
    Press, San Diego, California, USA, 1997.
    [11] Chen Yi-Xin, Shen Guang-Di, Zhu Yan-Xu, Guo Wei-Ling, Li Jian-Jun,
    “Efficiency-enhanced AlGaInP Light-Emitting Diodes with Thin
    Window Layers and Coupled Distributed Bragg Reflectors,” CHIN.
    PHYS. LETT., vol. 28, pp.067806, 2011.
    [12] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H.
    Chang, P. H. Liu, and K. C. Lin, “AlGaInP light-emitting diodes with
    mirror substrates fabricated by wafer bonding,” Appl. Phys. Lett., vol. 75,pp. 3054–3056, 1999.
    [13] A. Köck, E. Gornik, M. Hauser and W. Beinsting, “Strongly directional
    emission from AlGaAs/GaAs light-emitting diodes,” Appl. Phys. Lett.,
    vol 57, pp.2327, 1990.
    [1] Z. Hassan, Y. C. Lee, F. K. Yam, Z. J. Yap, N. Zainal, H. Abu Hassan,
    and L. Ibrahim, “Thermal stability of Ni/Ag contacts on p-type GaN,”
    phys.stat., vol. 10, pp. 2528-2532, 2004.
    [2] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H.
    Chang, P. H. Liu, and K. C. Lin, “AlGaInP light-emitting diodes with
    mirror substrates fabricated by wafer bonding,” Appl. Phys. Lett., vol. 75,
    pp. 3054–3056, 1999.
    [3] H. Sato, T. Minami, S. Takata, and T. Yamada, “Transparent conducting
    p-type NiO thin films prepared by magnetron sputtering,” Thin Solid
    Films, vol. 236, pp. 27-31, 1993.
    [4] O. Kohmoto, H. Nakagawa, F. Ono and A. Chayahara: J. Magn. & Magn.
    Mater, “Study of Annealed NiO Thin Films Sputtered on Unheated
    Substrate,” Jpn. J. Appl. Phys., vol 42, pp. L1178-L1181, 2003.
    [5] Jae Won Seo , Hwa Sub Oh , Joon Seop Kwak “High-efficiency vertical
    AlGaInPlight-emitting diodes with conductive omni-directional
    reflectors” Current Appl. Phys., Vol. 11, pp. S385-387, 2011.

    下載圖示 校內:2015-08-22公開
    校外:2016-08-22公開
    QR CODE