簡易檢索 / 詳目顯示

研究生: 高瑋嶸
Kao, Wei-jung
論文名稱: 以磁控濺鍍法製備ZrO2:Sm3+之結構與發光性質探討
Investigation on structure and photoluminescence of ZrO2:Sm3+ produced by RF sputtering deposition
指導教授: 黃肇瑞
Huang, Jow-lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 96
中文關鍵詞: 磁控濺鍍單斜相
外文關鍵詞: Monoclinic, Sm, RF sputtering
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全球能源短缺,因此發展出省電以及環保的產品迫在眉睫,LED
    即為一重要產品,白光LED 為多種色光混合而成,發光效率要有最好的
    前提條件為主體之聲子能量要低,而氧化鋯為一良好的選擇,本實驗的
    釤離子為稀土離子,放射光波長為黃光到紅光的範圍,為了追求良好的
    發光效率,因此朝製程上來研究,有別於一般的製程鮮少利用磁控濺鍍
    法,因此即採用此法為製程。
    實驗中的的最佳氧氣氛濃度為2%,使用的濃度對照為0.33at%、
    0.46at%、1.48at%、2.19at%,最佳發光強度之濃度為0.33at%摻雜濃度,
    2.19at%為淬滅濃度。
    兩種結構對574nm、575nm、622nm 在不同摻雜濃度有不同的影響,
    其他發光波長則來自於單斜相。
    關鍵字:磁控濺鍍、釤、單斜相

    There is a global energy shortage problem, so we must try to invent a
    energy-saving and environment friendly lighting product. LED is a ideal one.
    White light LED is composed of different color light. The presupposition of
    high luminescence efficiency is a host with low phonon energy, just like ZrO2.
    Sm is a rare-earth element and its emission wavelength range is from yellow
    to red light. We’re looking for a great procedure for high efficiency.
    According to previous research, we use RF-sputtering because of less process
    of RF sputtering.
    The best oxygen concentration for experiment was 2%. We used 0.33at%
    0.46% 1.48% 2.19% of Sm3+ as model. The highest luminescence efficiency
    concentration was 0.33at%.
    When the dopant concentration was changed, Monoclinic and Tetragonal
    had different effect on 574nm、575nm、622nm. The rest of emission peak
    were contributed to Monoclinic.
    Key word:RF sputtering、Sm、Monoclinic

    摘要...................................................................................................................I Abstract.............................................................................................................II 致謝.................................................................................................................III 總目錄..............................................................................................................V 圖目錄..........................................................................................................VIII 表目錄.............................................................................................................XI 第一章 緒論...................................................................................................1 1.1 前言..................................................................................................1 1.2 研究動機與目的..............................................................................2 第二章 理論基礎...........................................................................................3 2.1 何謂發光..........................................................................................3 2.2 發光種類與激發源..........................................................................3 2.3 螢光材料介紹..................................................................................5 2.4 發光機制介紹..................................................................................7 2.5 固態材料中的光致發光..................................................................8 2.5.1 本質型發光.............................................................................8 2.5.2 外質型發光...........................................................................10 2.5.2.1 非侷限型發光..........................................................10 2.5.2.2 侷限型發光..............................................................10 2.6 發光變因........................................................................................11 2.6.1 史托克位移...........................................................................11 2.6.2 能量轉移...............................................................................12 2.7 螢光體的組成與選擇....................................................................12 2.8 影響發光的因素............................................................................17 2.9 稀土金屬離子的發光特性............................................................19 2.10 ZrO2基本性質..............................................................................19 2.11 電漿理論基礎..............................................................................21 2.12 物理氣相沉積法..........................................................................26 2.12.1 薄膜成核成長理論...........................................................27 2.12.2 濺鍍理論...........................................................................28 2.12.3 射頻磁控濺鍍原理...........................................................31 2.13 CIE座標.......................................................................................34 第三章 實驗步驟與分析儀器.....................................................................35 3.1 實驗流程圖....................................................................................35 3.2 實驗材料........................................................................................36 3.3 實驗設備........................................................................................36 3.3.1 氧化層薄膜濺鍍系統...........................................................36 3.3.2 氣氛退火系統.......................................................................37 3.4 實驗流程........................................................................................37 3.4.1 基材前處理...........................................................................37 3.4.2 濺鍍步驟與條件...................................................................37 3.4.3 氣氛退火實驗.......................................................................38 3.5 樣品分析與測試............................................................................38 3.5.1 濺鍍速率之量測...................................................................38 3.5.2 XRD繞射分析......................................................................38 3.5.3 掃描式電子顯微鏡 (SEM) .................................................39 3.5.4 電子微探儀 (EPMA) ..........................................................39 3.5.5 微光激發光光譜儀 (Micro-PL) ..........................................40 3.5.6 成份與化學鍵結分析 (ESCA) ...........................................41 第四章 結果與討論.....................................................................................42 4.1 氧氣流量對薄膜的影響................................................................42 4.1.1 反應濺鍍速率.......................................................................42 4.1.2 成份及鍵結分析...................................................................44 4.2 製備不同摻雜濃度樣品................................................................51 4.2.1 成分分析...............................................................................51 4.2.2 XRD繞射分析......................................................................51 4-3 光致發光與結構性質探討............................................................56 4-3-1 濃度對光致發光的影響........................................................61 4-3-2 結晶相對光致發光的影響……………………….………………….…….65 4-3-2-1 晶相對發光強度的影響……………………...……65 4-3-2-2 晶相對放射峰值的影響……………………...……80 4-3-3 不同激發光波長對光致發光的影響……………….......….82 4-3-4 晶粒大小對光致發光的影響……………………...……….87 第五章 結論.................................................................................................89 第六章 參考文獻.........................................................................................91

    [1] S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, ”The ZnGa2O4 Phosphor for Low Voltage Blue Cathodoluminescence”, J. Electrochem. Soc.,138,1509, (1991)
    [2] S. Itoh, M. Yokoyama, and K. Morimoto, “Poisonous gas effects on the emission of oxide-coated cathodes”, J. Vac. Sci. Technol., A 5, 3430, (1987)
    [3] S. Itoh, T. Kimizuka, and T. Tonegawa, “Degradation Mechanism for Low-Voltage Cathodoluminescence of Sulfide Phosphors”, J. Electrochem. Soc., 136,1819, (1989)
    [4] C. F. Yu, and P. Lin, “Luminescent Characteristics of ZnGa2O4: Mn Phosphor Thin Films Grown by Radio-Frequency Magnetron Sputtering”, Jpn. J. Appl. Phys.,v35, 5726,(1996)
    [5] K. N. Kim, H.K. Jung, H. D. Park, and D. Kim, “High luminance of new green emitting phosphor, Mg2SnO4:Mn”, J. Lumin., 99, 169, (2002)
    [6] L. D. Carlos, V. de Zea Bermudez, and R. A. Sá Ferreira, “Multi-wavelength europium-based hybrid phosphors”, J. Non-Cryst.
    Solids, 247, 203, (1999)
    [7] P. Guo, F. Zhao, G. Li, F. Liao, S. Tian, and X. Jing, “Novel phosphors of Eu3+,Tb3+ or Bi3+ activated Gd2GeO5”, J. Lumin., 105, 61, (2003)
    [8] L. Ozawa, Chemical Review, “Cathode Ray Tube Phosphors”, v103, n10, 3835, (2003)
    [9] E. Danielson, J.H. Golden, E.W. McFarland, C.M. Reaves, W.H. Weinberg, and X.D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials”, Nature 389,944, (1997)
    [10] Z.G. Wei, L.D. Sun, C.S. Liao, and C.H. Yan, “Fluorescence intensity and color purity improvement in nanosized YBO3:Eu”, Appl. Phys. Lett., v80, n8, 1447, (2002)
    [11] Z. Yu, X. Huang, W. Zhuang, X. Cui, and H. Li, “Crystal structure transformation and luminescent behavior of the red phosphor for plasma display panels”, J. Alloy Compd., 390,220, (2005)
    [12] J. Zhang, Z. Zhang, Z. Tang, Y. Lin, and Z. Zheng, “Luminescent properties of Y2O3:Eu synthesized by sol-gel processing”, J. Mater. Process Tech.,121, 265, (2002)
    [13] J. M. Nedelec, C. Mansuy, and R. Mahiou, “Sol-gel derived YPO4 and LuPO4 phosphors, a spectroscopic study”, J. Mol. Struct., 651-653,165, (2003)
    [14] J. Li, and M. Kuwabara, “Preparation and luminescent properties of Eu-doped BaTiO3 thin films by sol-gel process”, Sci. and Tech. of Adv. Mater.,4,143, (2003)
    [15] Y. Li, X. Duan, H. Liao, and Y. Qian, “Self-Regulation Synthesis of Nanocrystalline ZnGa2O4 by Hydrothermal Reaction”, Chem. Mater.,10,17, (1998)
    [16] M. Hirano, “Hydrothermal synthesis and characterization of ZnGa2O4 spinel fine particles” ,J. Mater. Chem.,10, 469, (2000)
    [17] M. Hirano, M. Imai, and M. Inagaki, “Preparation of ZnGa2O4 Spinel Fine Particles by the Hydrothermal Method”, J. Am. Ceram. Soc., v83,n4, 977, (2000)
    [18] H.K. Jung, D.S. Park, and Y. C. Park, “Preparation and
    characterization of ZnGa2O4:Mn phosphors by multistage precipitation method ”, Mat. Res. Bull., v34,n1,43, (1999)
    [19] D. K. Williams, B. Bihari, B. M. Tissue, and J. M. McHale,
    “Preparation and Fluorescence Spectroscopy of Bulk Monoclinic
    Eu3+:Y2O3 and Comparison to Eu3+:Y2O3 Nanocrystals” ,J. Phys. Chem.,B,102, 916, (1998)
    [20] W.T. Hsu, W.H. Wu, and C.H. Lu, “Synthesis and luminescent properties of nano-sized Y3Al5O12:Eu3+ phosphors”, Mat. Sci. Eng. B, 104, 40, (2003)
    [21] S. Lange , I. Sildos , M. Hartmanova , J. Aarik , V. Kiisk, “Luminescence properties of Sm3+-doped polycrystalline ZrO2” , Journal of Non-Crystalline Solids,354,4380–4382, (2008)
    [22] 施敏(原著),黃調元(譯),”半導體元件物理與製作技術”,
    國立交通大學出版社,2002 年9 月。
    [23] 楊俊英著,“電子產業用螢光材料之應用調查”,工研院 民國81 年。
    [24] D.R.Vij, “Luminescence in Solids”,Plenum press, New York, (1998)
    [25] S. Shionoya, and W. M. Yen, ”Phosphor Handbook”, CRC press, (1999)
    [26] B. Henderson, and G.F. Imbusch, ”Optical Spectroscopy of Inorganic Solids”, Clarendon, Oxford, (1989)
    [27] B. DiBartolo, ”Energy Transfer Process in Condensed Matter”, Plenum, New York, (1984)
    [28] G. Blasse, ”Luminescence of inorganic solids: From isolated centres to concentrated systems”, Prog. Solid State Chem.,18, 79, (1988)
    [29] 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,(2003)。
    [30] G. Blasse, and B. C. Grabmaier, ”Luminescence Material” , Springer-Verlag Telos, (1994)
    [31] P. Atkins, L. Jones,” Chemistry molecules, Matter, and Change”, 3rd edition, (1997)
    [32] A. Polman, “Erbium implanted thin film photonic materials”, Appl.
    Phys. Rev.,82,1, (1997)
    [33] G. Blasse, ”Handbook on the Physics and Chemistry of Rare Earths”, Vol.4, North-Holland, p.237, (1979)
    [34] T. Hoshina,” Luminescence of Rare Earth Ions”, Sony Research Center Rep.,(1983)
    [35] G. Adachi,” Rare Earths-Their Properties and Applications”, Gihodo, p.173, (1980)
    [36] J. Garcia Sole, L. E. Bausa, D. Jaque, “An introduction to the optical spectroscopy of inorganic solids”, (Madrid, 06 2004)
    [37] T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker,” Binary Alloy
    Phase Diagrams”, American Society for metals, Ohio, (1987)
    [38] Y. M. Chiang, D. Birnie III, W. D. Kingery,“ Physical Ceramics:
    Principles for ceramic science and engineering”, Wiley, New York, 1997
    [39] D. J. Green, R. H. J. Hannink, M. V. Swain, “Transformation toughnening of ceramics”, CRC Press, Florida, (1989)
    [40] S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, “Handbook of
    Plasma Processing Technology”, Park Ridge, New Jersey: Noyes
    Publications, (1982)
    [41] D. S. Rickerby, A. Matthews,” Advanced Surface Coatings: a
    Hanbdbook of Surface Engineering”, Blackie & Son Ltd.,
    p.196, (1991).
    [42] J. L. Vossen and W. Kern, “Thin Film Processes II, Academic Press”, Inc.,Bonton, p. 21., (1991).
    [43] L. J. Vossen, and W. Kerm, ”Thin Film Process, Academic Process”,
    pp. 134., (1999).
    [44] S. M. Rossnagel et al., “Handbook of Plasmas Processing
    Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A, 1982
    [45] Walter H. Class, 楊錦章 譯, ”基礎濺鍍電流”, 電子發展月刊, Vol.68, 97, p.13-40, (1983).
    [46] Pengtao Gao, L.J. Meng, M.P. dos Santos, V. Teixeira, M.
    Andritschky,” Characterisation of ZrO2 thin films prepared by rf reactive sputtering at different O2 concentrations in the sputtering gases”, Vacuum, 56,143-148, (2002)
    [47] N.L. Zhang, Z.T. Song, Q. Wan, Q.W. Shen, C.L. Lin, “Interfacial and microstructural properties of zirconium oxide thin films prepared directly on silicon”, Applied Surface Science, 202, 126–130, (2002)
    [48] Tung-Ming Pan, Chun-Chin Huang, Shi-Xian You, and Chih-Cheng Yeh, “Effect of Annealing on the Structural and Electrical Properties
    of High-k Sm2O3 Dielectrics”, Electrochemical and Solid-State Letters, 11, (12), G62-G65, (2008)
    [49] Chong Wang, “Experimental and Computational Phase Studies of
    the ZrO2-based Systems for Thermal Barrier Coatings”, Universität Stuttgart, September , (2006)
    [50] G. Baldinozzi, D. Simeone, D. Gosset, and M. Dutheil, “Neutron Diffraction Study of the Size-Induced Tetragonal to Monoclinic Phase Transition in Zirconia Nanocrystals”, Phys. Rev. Lett., 90, 216103, (2003)
    [51] Akihide Kuwabara and Junji Katamura, “Influence of Interaction between Neighboring Oxygen Ions on Phase Stability in Cubic Zirconia”, J. Am. Ceram. Soc., 85, [10], 2557–61, (2002)
    [52] M. Hartmanová, F. Kubel, V. Bur ková, M. Jergel, V. Navrátil, E. E. Lomonova,K. Navratil, F. Kundracik, and I. Kosti,” Effect of Composition Changes on Properties and Defect Structure of Crystalline Sm-Doped ZrO2”, Russian Journal of Electrochemistry, Vol. 43, No. 4, pp. 381–389,(2007)
    [53] E. De la Rosa1, L.A. Diaz-Torres, P. Salas, R. A. Rodríguez and
    C. Angeles, “Temperature effect in the crystallite size and the
    photoluminescence of nanocrystalline ZrO2:Sm3+ phosphor”, Proc. of SPIE Vol. 5510
    [54] 林志謀, 陳貞夙, “The Influence of Crystallinity on Emission
    Behavior of Zn2SiO4:Ti Thin Film”, Journal of Materials Science and Engineering, Vol. 37, No. 4, PP. 204-210, (2005)
    [55] 袁劍輝, 王曉君, 程玉民, “原材料Y2O3的結晶性對Y2O2S:Eu3+發
    光特性的影響”, 光學學報,vol25,No.9, 09, (2005)
    [56] P. Mikhail, J. Hulliger, K. Ramseyer, “Cathodoluminescence and photoluminescence of Smn+(n=2,3) oxide environments,” Solid State Communications, 112, 483–488, (1999)
    [57] Zerihun Assefa, R.G. Haire, P.E. Raison, “Photoluminescence and Raman studies of Sm3+ and Nd3+ ions in zirconia matrices: example of energy transfer and host–guest interactions”,
    Spectrochimica Acta Part A, 60, 89–95, (2004)
    [58] E.A. Morais, S.J.L. Ribeiro, L.V.A. Scalvi, C.V. Santilli, L.O. Ruggiero, S.H. Pulcinelli, Y. Messaddeq, “ O ptical characteristics of Er –Yb doped SnO xerogels”, Journal of Alloys and Compounds, 344, 217–220, (2002)
    [59] G. Cabello, L. Lillo, C. Caro, G.E. Buono-Core, B. Chornik, M.A. Soto,” Structure and optical characterization of photochemically prepared ZrO2 thin films doped with erbium and europium”, Journal of Non-Crystalline Solids, 354, 3919–3928, (2008)

    下載圖示 校內:2010-08-05公開
    校外:2010-08-05公開
    QR CODE