簡易檢索 / 詳目顯示

研究生: 陳志堅
Chen, Chih-Chien
論文名稱: 股價與權證關係性之研究
On the Study of the Relationship Between Stock Pricing and Warrant
指導教授: 任眉眉
Zen, Mei-Mei
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 46
中文關鍵詞: 權證Black-Scholes模式轉折點幾何布朗運動
外文關鍵詞: Warrant, change-points, geometric Brownian motion, Black-Scholes model
相關次數: 點閱:113下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文分別針對股價模型轉折點之估計問題與股價與權證聯動性兩部分做研究,在股價模型部分,我們以幾何布朗運動配適股價,在此模型之下,利用最大概似法分別探討離散時間與連續時間兩方面多重轉折點估計方法之研究,並以台灣證卷交易所的電子類股指數資料進行實證分析。在股價與權證價格的聯動性部分,探討Black-Scholes定價公式與市場價格之關係,並以元大京華證卷發行的元大B9與其標的股兆豐金控為實例進行探討,並得到一些有趣的結果。

      In this thesis, there are two parts including both change-points detection for geometric Brownian motion of stock pricing and the study of the relationship between stock pricing and warrants. In problem of detecting change-points for the geometric Brownian motion of stock pricing, maximum likelihood principle is applied to estimate the change-points. In this study, both discrete-time and continuous-time estimation are considered. And electronic sector stock index of TSE are analyzed to illustrate the proposed procedure. In problem of is studying the relationship between stock pricing and warrants, we discuss the rationality of Black-Scholes model using an example of Yuanta Core Sec. Warrant B9 and MEGA FHC. Some interesting results are found in the study.

    1 緒論 1 1.1 研究動機及背景........................... 1 1.2 研究目的................................. 2 1.3 資料描述與來源........................... 3 1.4 研究架構................................. 4 2 文獻回顧 5 2.1 股票報酬率的性質......................... 5 2.2 股價的模型............................... 6 2.3 股價的分配............................... 7 2.4 具有轉折點的幾何布朗運動模式............. 8 3 多重轉折點的幾何布朗運動 13 3.1 具有多個轉折點的幾何布朗運動模式.........13 3.2 轉折點的估計.............................17 3.3 電子類股指數的分析.......................26 4 權證與股價之關係 35 4.1 Black-Scholes模式........................35 4.2 Black-Scholes模式的探討..................36 4.3 權證實例探討.............................39 5 結論 43 參考文獻 45

    [1]Abramowitz, m. and Stegun, I.(1972), Handbook of Mathematical Function,
    New York: Dover Publications.

    [2]Akaike, H. (1973), "Maximum Likelihood Identification of Gaussian Auto-Regressive Moving Average Models",
    Biometrika, 60, 255-266.

    [3]Black, F. and Scholes, M.(1973), "The Pricing of Options amd Corporate Liabilities",
    Journal of Political Economy,81, 637-659.

    [4]Cowles, A. (1933), "Can Stock Market Forecasters Forecast?",
    Econometrica, 1, 309-324.

    [5]Cowles, A. and John, H. E. (1937), "Some a Posteriori Probabilities in Stock Market Action",
    Econometrica, 5, 280-294.

    [6]Harvey, A. C. (1993), Time Series Models. 2nd Edition, Harvester Wheatsheaf, NY.

    [7]Hull, J. C. (2002), Options, Futures and Other Derivatives, 5th Edition,
    Prentice Hall, New Jersey.

    [8]Ito, K. (1951), "On stochastic Differential Equations",
    Memoirs, American Mathematical Society, 4, 1-51.

    [9]Kendall, M. G. (1953), "The Analysis of Economic Time-Series. part 1. Prices",
    Journal of the Royal Statistical Society, 96, 11-25.

    [10]Ljung, G. M. and Box, G. E. P.(1978), "On a Measure of Lack of Fit in Time Series Models",
    Biometrika, 65,297-303.

    [11]Samuelson, P. A. (1965), "Proof that Property Anticipated Prices Fluctuate Randomly",
    Industrial Management Review, 6, 41-49.

    [12]Patrick, Royston (1995). "A Remark on Algorithm AS 181: The W Test for Normality",
    Applied Statistics, 44, 547-551.

    [13]West, R. W. and Ogden, R. T. (1999), "Coutinuous-time Estimation of a Change-point in a Poisson Process",
    Journal of Statistical Computation and Simulation, 56, 293-302.

    [14]Working, H. (1934), "A Random-difference Series for Use in the Analysis of Time Series",
    Journal of the American Statistical Association, 29, 11-24.

    [15]許雁然(2003), "股票市場價格轉折點之研究",
    國立成功大學統計學系碩士論文。

    下載圖示 校內:立即公開
    校外:2004-07-07公開
    QR CODE