簡易檢索 / 詳目顯示

研究生: 林子恆
Lin, Tz-Heng
論文名稱: 雙孔隙材料聲學性質三維數值分析
Three-dimensional Numerical Analysis on Acoustic Properties of Double-porosity Materials
指導教授: 林育芸
Lin, Yu-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 雙孔隙Biot模型等效流體模型有限元素法
外文關鍵詞: double-porosity, Biot model, equivalent fluid models, Finite element
相關次數: 點閱:88下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大部分吸音及隔音材料,為低密度和高孔隙率的材料,如岩棉、玻璃棉等。為了改善這些材料在中低頻之吸音效能表現,因而在原本多孔性材料上增加不同於原本孔隙特徵尺寸之孔洞大小,稱之為雙孔隙材料。由於兩種尺寸孔洞間之耦合效應亦稱為聲壓擴散現象,使雙孔隙材料能有效提升中低頻之吸音效能。但在隔音方面,若使用貫穿式開孔之雙孔隙材料,其隔音效能不佳。本研究探討雙孔隙材料的開孔率及開孔型式,如何影響雙孔隙材料吸音及隔音上的效能。本文使用Comsol有限元素分析軟體建立三維聲學數值模型,使用數種等效流體模型與Biot模型做為比較。其中Biot模型能同時描述固體與流體之聲學特性於數值分析中,較等效流體模型更便於同時應用在吸音及隔音分析。由分析模型與文獻實驗結果比對可知,能夠預測雙孔隙材料吸音效能的提升。透過雙孔隙材料之開孔率及開孔尺寸變化可調整吸音效能增加的頻率範圍。但是,當雙孔隙材料之開孔率增加時,隔音效能會降低,因隔音效能仍以單位面積之材料質量及流體阻力係數所主宰。

    Most sound absorption materials are generally low density and high porosity, such as rockwool and glasswool. To improve the ability of sound absorption at low to medium frequencies, these porous materials are added meso-pores of size much bigger than the characteristic length of original micro-pores, as so-called double-porosity materials. Double-porosity materials can effectively improve the sound absorbing performance at specific frequency range, because of the coupling of meso-pores and micro-pores also referring to as pressure diffusion phenomenon. However, double-porosity materials behaves poorly in sound insulation. This research studied how the porosity and geometry of meso-pores improve the ability of double-porosity materials in sound absorption and insulation. Three-dimensional acoustic numerical models were developed using the finite element software Comsol. Several equivalent fluid models and Biot model were used as comparison. Biot model describes the acoustic vibration of solid skeleton and pore fluid, so it is more convenient to use in both sound absorption and insulation analyses than equivalent fluid models. From the comparison of numerical results and experimental data in the literature, the improvement in sound absorption for double-porosity materials can be predicted. Using different porosity and characteristic length of meso-pores, the effective frequency range can be adjusted. However, as the meso-porosity increases, the sound insulation performance will be reduced. Because the sound insulation is dominated by mass and flow resistivity per unit area.

    摘要 I ABSTRACT II 誌謝 X 目錄 XII 表目錄 XIV 圖目錄 XV 符號表 XVIII 第一章 緒論 1 1.1研究動機與目的 1 1.2本文架構與內容 2 第二章 文獻回顧 3 第三章 聲音的基本理論介紹 5 3.1聲場方程式 5 3.1.1聲學的波動方程式 5 3.1.2平面波與聲學阻抗 7 3.2等效流體模型 8 3.2.1 Delany與Bazley 模型 8 3.2.2 Zwikker與Kosten 模型 9 3.2.3 Olny與Boutin 模型 10 3.3 Biot多孔性材料聲學模型 13 3.3.1控制方程式 13 3.3.2平面波的聲學特性 17 3.3.3正規化波數及特徵阻抗 19 3.4雙孔隙(Double porosity)材料分析 22 3.4.1 Olny與Boutin雙孔隙模型 23 3.4.2 Zwikker與Kosten雙孔隙模型 25 第四章 單層孔隙材料數值分析與理論比較 37 4.1聲波的反射與透射特性 37 4.2單層有限厚度的吸音與隔音分析 38 4.3吸音效能分析結果 43 4.3.1單層岩棉吸音分析 43 4.3.2單層Green Foam吸音分析 44 4.3.3單層泡沫無機聚合物PM290吸音分析 44 4.3.4單層雙孔隙岩棉吸音分析 45 4.3.5單層雙孔隙Green Foam吸音分析 45 4.4隔音效能分析結果 47 4.4.1單層岩棉隔音分析 47 4.4.2單層Green Foam隔音分析 47 4.4.3單層泡沫無機聚合物PM290隔音分析 48 4.4.4單層雙孔隙岩棉隔音分析 48 第五章 多層孔隙材料數值分析與理論比較 68 5.1多層有限厚度的吸音與隔音分析 68 5.2吸音效能分析結果 70 5.3隔音效能分析結果 71 第六章 結論 84 參考文獻 86

    [1] J.Davidovits, ”Geopolymers : inorganic polymeric new materials,” Journal of Thermal Analysis, vol. 37, pp.1633-1656, 1991.
    [2] 洪塗城,「泡沫無機聚合物的製作及性能」,成功大學土木工程研究所博士論文,2013。
    [3] M.E. Delany, & E.N. Bazley, ”Acoustical Properties of Fibrous Materials,” Applied Acoustics, vol. 3, pp.105-116, 1970.
    [4] C. Zwikker, & C. W. Kosten, ”Sound Absorbing materials,” Elsevier, New York, 1949.
    [5] X. Olny, & C. Boutin, ”Acoustic wave propagation in double porosity media,” Journal of the Acoustical Society of America, pp.73–89, 2003.
    [6] M.A. Biot, ”Theory of propagation of elastic waves in a fluid-saturated porous solid.I.Low frequency range,” Journal of the Acoustical Society of America, vol. 28, pp.168-178, 1956.
    [7] M. A. Biot, ”Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High frequency range” Journal of the Acoustical Society of America, vol. 28, pp.179-191, 1956.
    [8] M. A. Biot, ”Mechanics of Deformation and Acoustic Propagation in Porous Media.” Journal of Applied Physics, vol. 33, pp.1482-1498, 1962.
    [9] J.F. Allard , C. Depollier , P. Guignouard, & P. Rebillard, ”Effect of a resonance of the frame on the surface impedance of glass wool of high density and stiffness,” Journal of the Acoustical Society of America, vol. 89, pp.999-1001, 1991.
    [10] 陳彥智,「多孔性材料之吸音與隔音性質探討」,成功大學土木工程研究所碩士論文,2014。
    [11] F. C. Sgard, X. Olny, N. Atalla, & F. Castel, ”On the use of perforations to improve the sound absorption of porous materials,” Applied Acoustics, vol. 66, pp.625–651 , 2005.
    [12] 白明憲,「工程聲學」,全華書局,2004。
    [13] F. X. Bécot, O. Dazel, & L Jaouen, ”Structural effects in double porosity materials: analytical modeling and numerical validation,” The 24th International Conference on Noise and Vibration engineering (ISMA2010), Leuven, Belgium, 2010.
    [14] 洪子婷,「有限元素數值分析多孔性材料之隔音與吸音特性」,成功大學土木工程研究所碩士論文,2015。
    [15] F. Fahy, ”Sound and Structural Vibration: Radiation, Transmission and Response,” Elsevier Academic Press, 1985.
    [16] F. Fahy, ”Foundations of Engineering Acoustics,” Elsevier Academic Press, 2001.

    下載圖示 校內:2022-01-01公開
    校外:2022-01-01公開
    QR CODE