| 研究生: |
黃佳啟 Huang, Chia-Chi |
|---|---|
| 論文名稱: |
重組凝血酶調節素功能區對蝕骨細胞新生的影響 The effects of recombinant thrombomodulin domain proteins on osteoclastogenesis |
| 指導教授: |
吳華林
Wu, Hua-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 凝血酶調節素 、蝕骨細胞新生 、巨噬細胞生長因子受體 、巨噬細胞生長因子 、白介素34 |
| 外文關鍵詞: | Thrombomodulin, Osteoclastogenesis, M-CSF receptor, IL-34, M-CSF |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蝕骨細胞在骨頭動態平衡中扮演重要的角色。在我們實驗室先前的研究指出屬於第一型穿膜醣蛋白的凝血酶調解素表現量會在蝕骨細胞新生的過程中下降。在骨髓細胞特異性凝血酶調解素缺陷小鼠上可以發現較嚴重的骨質疏鬆。然而凝血酶調解素重組蛋白調控蝕骨細胞新生的機制仍然不清楚。在本篇論文中,我們利用抗酒石酸酸性磷酸酶染色發現小鼠巨噬細胞株(RAW264.7)的蝕骨細胞新生會受到凝血酶調節素重組蛋白抑制。此外凝血酶調解素重組蛋白的處理會促使前破骨細胞標記和骨吸收蛋白的訊息核醣核酸水平下降,其中前破骨細胞標記包含樹突狀細胞特異性跨膜蛋白(DC-STAMP)以及氫離子-三磷酸腺苷酶轉運V0亞基D2(ATP6V0D2),而骨吸收蛋白包含組織蛋白酶K(cathepsin K)以及抗酒石酸酸性磷酸酶。這項實驗結果暗示凝血酶調解素重組蛋白對蝕骨細胞新生的影響在表現訊息核醣核酸的上游。凝血酶調解素重組蛋白也抑制了由巨噬細胞生長因子和核內細胞因子活化型 B 細胞κ輕鏈促進物之受體活化器(RANKL)所誘導細胞分化的信號通路活化。有趣的是我們利用免疫共沉澱法證明凝血酶調解素重組蛋白會連結巨噬細胞生長因子受體,而不是核內細胞因子活化型 B 細胞κ輕鏈促進物之受體。從共軛焦螢光顯微鏡的圖像顯示羅丹名標記的凝血酶調解素重組蛋白和巨噬細胞生長因子受體有部分共位。在凝血酶調解素重組蛋白處理下,巨噬細胞生長因子誘導的胞外信號調節激酶以及蛋白激酶B皆會下降。在類風溼性關節炎的病患血液當中可以發現白介素34過度表達。白介素34同為巨噬細胞生長因子受體的配體。在小鼠巨噬細胞株上,凝血酶調解素重組蛋白可以抑制白介素34引起的蝕骨細胞新生。在凝血酶調解素重組蛋白處理下,白介素34驅使的訊息傳遞也會降低。然而僅有一個凝血酶調解素重組蛋白的區域能夠減緩白介素34引起的訊息通路。總結來說,本研究顯示凝血酶調解素重組蛋白藉由結合巨噬細胞生長因子受體並降低其訊息傳遞,阻止蝕骨細胞前體的增殖進而抑制蝕骨細胞新生。
Osteoclasts play an important role in bone homeostasis. The previous studies in our lab indicated that the expression level of thrombomodulin (TM) in osteoclasts, a type Ⅰ transmembrane glycoprotein, was reduced during the progression of osteoclastogenesis. More severe osteoporosis was obsessed in the myeloid-specific TM-deficient mice. However, the mechanism by which recombinant TM domain protein (rTMD) regulates osteoclastogenesis is still unclear. In this study, the results of tartrate-resistant acid phosphatase (TRAP) stain revealed that the osteoclastogenesis of RAW264.7, a mouse macrophage cell line, was inhibited by rTMD. Moreover, the treatment of rTMD induced a decrease in mRNA levels of preosteoclast markers, including dendritic cell-specific transmembrane protein (DC-STAMP) and ATPase H^+ transporting V0 subunit D2 (ATP6V0D2), and bone resorption proteins, including cathepsin K and TRAP, suggesting that rTMD inhibits osteoclastogenesis is upstream of mRNA expression. rTMD also inhibited the signaling transduction pathways involved in cell differentiation induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κ B ligand (RANKL). Interestingly, we also demonstrated that rTMD was associated with M-CSF receptor, not receptor activator of nuclear factor κ B (RANK), by co-immunoprecipitation. The images of confocal fluorescence microscopy showed that rhodamine-labeled rTMD was partially co-localized with M-CSF receptor. A decrease in both M-CSF-induced signaling pathways, extracellular signal–regulated kinases and protein kinase B, was found in rTMD-treated RAW264.7 cells. Interleukin 34 (IL-34), which is also a ligand of M-CSF receptor with stronger affinity than M-CSF, was found to be over-expressed in rheumatoid arthritis patients. rTMD can inhibit IL-34-induced osteoclastogenesis in RAW264.7 cells. The downstream signal transduction activation driven by IL-34 was also declined in rTMD-treated cells. However, only one domain of rTMD could retard IL-34-induced signaling pathway. In conclusion, my experimental results indicated that rTMD suppresses the proliferation of osteoclast precursors by binding to M-CSF receptor and diminishing its signal transduction and therefore inhibits osteoclastogenesis.
REFERENCES
1. Hadjidakis, D.J. and Androulakis, II, Bone remodeling. Ann N Y Acad Sci, 2006. 1092: p. 385-96.
2. Feng, X. and J.M. McDonald, Disorders of bone remodeling. Annu Rev Pathol, 2011. 6: p. 121-45.
3. Schartum, S. and G. Nichols, Jr., Concerning pH gradients between the extracellular compartment and fluids bathing the bone mineral surface and their relation to calcium ion distribution. J Clin Invest, 1962. 41(5): p. 1163-8.
4. Raggatt, L.J. and N.C. Partridge, Cellular and molecular mechanisms of bone remodeling. J Biol Chem, 2010. 285(33): p. 25103-8.
5. Eriksen, E.F., Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord, 2010. 11(4): p. 219-27.
6. Raisz, L.G., Physiology and Pathophysiology of Bone Remodeling. Clinical Chemistry, 1999. 45(8): p. 1353-1358.
7. Delaisse, J.M., The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonekey Rep, 2014. 3: p. 561.
8. Nakamura, H., Morphology, Function, and Differentiation of Bone Cells. Journal of Hard Tissue Biology, 2007. 16(1): p. 15-22.
9. Weitzmann, M.N. and R. Pacifici, Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest, 2006. 116(5): p. 1186-94.
10. Tella, S.H. and J.C. Gallagher, Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol, 2014. 142: p. 155-70.
11. Novack, D.V., Estrogen and bone: osteoclasts take center stage. Cell Metab, 2007. 6(4): p. 254-6.
12. Okman-Kilic, T., Estrogen deficiency and osteoporosis, in Advances in Osteoporosis. 2015, IntechOpen.
13. Chen, X., et al., Osteoblast-osteoclast interactions. Connect Tissue Res, 2018. 59(2): p. 99-107.
14. Takahashi, N., N. Udagawa, and T. Suda, Vitamin D endocrine system and osteoclasts. Bonekey Rep, 2014. 3: p. 495.
15. Zhao, Q., et al., Osteoclast differentiation and gene regulation. Frontiers in bioscience : a journal and virtual library, 2007. 12: p. 2519-29.
16. Yavropoulou, M.P. and J.G. Yovos, Osteoclastogenesis--current knowledge and future perspectives. J Musculoskelet Neuronal Interact, 2008. 8(3): p. 204-16.
17. Teitelbaum, S.L. and F.P. Ross, Genetic regulation of osteoclast development and function. Nature Reviews Genetics, 2003. 4(8): p. 638-649.
18. Boyle, W.J., W.S. Simonet, and D.L. Lacey, Osteoclast differentiation and activation. Nature, 2003. 423(6937): p. 337-42.
19. Jurdic, P., et al., Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol, 2006. 85(3-4): p. 195-202.
20. Takito, J., S. Inoue, and M. Nakamura, The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone. Int J Mol Sci, 2018. 19(4).
21. Stanley, E.R. and V. Chitu, CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol, 2014. 6(6).
22. Bonifer, C. and D. Hume, The transcriptional regulation of the Colony-Stimulating Factor 1 Receptor (csf1r) gene during hematopoiesis. Frontiers in bioscience : a journal and virtual library, 2008. 13: p. 549-60.
23. Kim, J.H. and N. Kim, Signaling Pathways in Osteoclast Differentiation. Chonnam Med J, 2016. 52(1): p. 12-7.
24. Ji, X., X. Chen, and X. Yu, MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis. Int J Mol Sci, 2016. 17(3): p. 349.
25. Boyce, B.F., Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts. J Bone Miner Res, 2013. 28(4): p. 711-22.
26. Kwon, O.H., et al., The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors. Biochem Biophys Res Commun, 2005. 335(2): p. 437-46.
27. Woo, K.M., H.-M. Kim, and J.S. Ko, Macrophage colony-stimulating factor promotes the survival of osteoclast precursors by up-regulating Bcl-XL. Experimental & Molecular Medicine, 2002. 34(5): p. 340-346.
28. Boyce, B.F. and L. Xing, Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther, 2007. 9 Suppl 1: p. S1.
29. Wada, T., et al., RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends in Molecular Medicine, 2006. 12(1): p. 17-25.
30. Teti, A. and N. Rucci, The unexpected links between bone and the immune system. Medicographia, 2010. 32: p. 341-348.
31. Guillonneau, C., S. Bezie, and I. Anegon, Immunoregulatory properties of the cytokine IL-34. Cell Mol Life Sci, 2017. 74(14): p. 2569-2586.
32. Baghdadi, M., et al., Interleukin-34, a comprehensive review. J Leukoc Biol, 2018. 104(5): p. 931-951.
33. Barve, R.A., et al., Transcriptional profiling and pathway analysis of CSF-1 and IL-34 effects on human monocyte differentiation. Cytokine, 2013. 63(1): p. 10-17.
34. Baghdadi, M., et al., Interleukin 34, from pathogenesis to clinical applications. Cytokine, 2017. 99: p. 139-147.
35. McInnes, I.B. and G. Schett, The pathogenesis of rheumatoid arthritis. N Engl J Med, 2011. 365(23): p. 2205-19.
36. Hwang, S.J., et al., Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther, 2012. 14(1): p. R14.
37. Eda, H., et al., Proinflammatory cytokines, IL-1beta and TNF-alpha, induce expression of interleukin-34 mRNA via JNK- and p44/42 MAPK-NF-kappaB pathway but not p38 pathway in osteoblasts. Rheumatol Int, 2011. 31(11): p. 1525-30.
38. Wang, B., et al., IL-34 Upregulated Th17 Production through Increased IL-6 Expression by Rheumatoid Fibroblast-Like Synoviocytes. Mediators Inflamm, 2017. 2017: p. 1567120.
39. Zhou, R.P., et al., Functions of interleukin-34 and its emerging association with rheumatoid arthritis. Immunology, 2016. 149(4): p. 362-373.
40. Conway, E.M., The type XIV family of C-type lectin-like domain (CTLD) containing proteins. Curr Drug Targets, 2012. 13(3): p. 409-10.
41. Wen, D., et al., Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry, 1987. 26(14): p. 4350-4357.
42. Loghmani, H. and E.M. Conway, Exploring traditional and nontraditional roles for thrombomodulin. Blood, 2018. 132(2): p. 148-158.
43. Esmon, C.T., N. Esmon, and K. Harris, Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. Journal of Biological Chemistry, 1982. 257(14): p. 7944-7947.
44. Cirino, G., et al., Thrombin functions as an inflammatory mediator through activation of its receptor. J Exp Med, 1996. 183(3): p. 821-7.
45. Li, Y.H., et al., The role of thrombomodulin lectin-like domain in inflammation. J Biomed Sci, 2012. 19: p. 34.
46. Chen, P.K., et al., Thrombomodulin functions as a plasminogen receptor to modulate angiogenesis. Faseb j, 2013. 27(11): p. 4520-31.
47. Ma, C.Y., et al., Recombinant thrombomodulin inhibits lipopolysaccharide-induced inflammatory response by blocking the functions of CD14. J Immunol, 2015. 194(4): p. 1905-15.
48. Hsu, Y.Y., et al., Thrombomodulin is an ezrin-interacting protein that controls epithelial morphology and promotes collective cell migration. Faseb j, 2012. 26(8): p. 3440-52.
49. Ishii, H. and P.W. Majerus, Thrombomodulin is present in human plasma and urine. The Journal of Clinical Investigation, 1985. 76(6): p. 2178-2181.
50. Gando, S., et al., Cytokines, soluble thrombomodulin and disseminated intravascular coagulation in patients with systemic inflammatory response syndrome. Thrombosis Research, 1995. 80(6): p. 519-526.
51. Lohi, O., S. Urban, and M. Freeman, Diverse Substrate Recognition Mechanisms for Rhomboids: Thrombomodulin Is Cleaved by Mammalian Rhomboids. Current Biology, 2004. 14(3): p. 236-241.
52. Cheng, T.-L., et al., Functions of Rhomboid Family Protease RHBDL2 and Thrombomodulin in Wound Healing. Journal of Investigative Dermatology, 2011. 131(12): p. 2486-2494.
53. Shi, C.S., et al., Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation, 2005. 111(13): p. 1627-36.
54. Kuo, C.-H., et al., The recombinant lectin-like domain of thrombomodulin inhibits angiogenesis through interaction with Lewis Y antigen. Blood, 2012. 119(5): p. 1302-1313.
55. Ma, C.Y., et al., Monocytic thrombomodulin triggers LPS- and gram-negative bacteria-induced inflammatory response. J Immunol, 2012. 188(12): p. 6328-37.
56. Cheng, T.L., et al., Myeloid thrombomodulin lectin-like domain inhibits osteoclastogenesis and inflammatory bone loss. Sci Rep, 2016. 6: p. 28340.
57. McCachren, S.S., et al., Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood, 1991. 78(12): p. 3128-32.
58. Conway, E.M. and B. Nowakowski, Biologically active thrombomodulin is synthesized by adherent synovial fluid cells and is elevated in synovial fluid of patients with rheumatoid arthritis. Blood, 1993. 81(3): p. 726-33.
59. Van de Wouwer, M., et al., The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost, 2006. 4(8): p. 1813-24.
60. Andersson, U. and H. Erlandsson-Harris, HMGB1 is a potent trigger of arthritis. J Intern Med, 2004. 255(3): p. 344-50.
61. Shi, C.S., et al., Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood, 2008. 112(9): p. 3661-70.
62. Lai, C.H., et al., Recombinant human thrombomodulin suppresses experimental abdominal aortic aneurysms induced by calcium chloride in mice. Ann Surg, 2013. 258(6): p. 1103-10.
63. Masteller, E.L. and B.R. Wong, Targeting IL-34 in chronic inflammation. Drug Discov Today, 2014. 19(8): p. 1212-6.
64. Chihara, T., et al., IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ, 2010. 17(12): p. 1917-27.
65. Hodge, J.M., M.A. Kirkland, and G.C. Nicholson, Multiple roles of M-CSF in human osteoclastogenesis. J Cell Biochem, 2007. 102(3): p. 759-68.
66. Motiur Rahman, M., et al., Proliferation-coupled osteoclast differentiation by RANKL: Cell density as a determinant of osteoclast formation. Bone, 2015. 81: p. 392-399.
67. Au - Marahleh, A., et al., Effect of Anti-c-fms Antibody on Osteoclast Formation and Proliferation of Osteoclast Precursor In Vitro. JoVE, 2019(145): p. e59089.
68. Kim, M.Y., et al., Specific targeting of PKCδ suppresses osteoclast differentiation by accelerating proteolysis of membrane-bound macrophage colony-stimulating factor receptor. Scientific Reports, 2019. 9(1): p. 7044.
69. Abeyama, K., et al., The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest, 2005. 115(5): p. 1267-74.
70. Li, Y.-H., et al., The role of thrombomodulin lectin-like domain in inflammation. Journal of biomedical science, 2012. 19: p. 34.
71. 馬志遠, 研究凝血酶調節素在單核球及巨噬細胞的功能, in 基礎醫學研究所. 2012, 國立成功大學: 台南市. p. 86.
72. Brühl, H., et al., Dual Role of CCR2 during Initiation and Progression of Collagen-Induced Arthritis: Evidence for Regulatory Activity of CCR2<sup>+</sup> T Cells. The Journal of Immunology, 2004. 172(2): p. 890-898.
73. Kumari, A., O. Silakari, and R.K. Singh, Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother, 2018. 103: p. 662-679.
74. Hiraga, T. and H. Nakamura, Imatinib mesylate suppresses bone metastases of breast cancer by inhibiting osteoclasts through the blockade of c-Fms signals. International Journal of Cancer, 2009. 124(1): p. 215-222.
75. Ohno, H., et al., The orally-active and selective c-Fms tyrosine kinase inhibitor Ki20227 inhibits disease progression in a collagen-induced arthritis mouse model. European Journal of Immunology, 2008. 38(1): p. 283-291.
76. Marshall, D., et al., Blockade of colony stimulating factor-1 (CSF-1) leads to inhibition of DSS-induced colitis. Inflammatory Bowel Diseases, 2006. 13(2): p. 219-224.
77. Chalmers, S.A., et al., CSF-1R inhibition attenuates renal and neuropsychiatric disease in murine lupus. Clinical Immunology, 2017. 185: p. 100-108.
校內:2025-02-01公開