簡易檢索 / 詳目顯示

研究生: 李誌原
Lee, Chih-Yuan
論文名稱: 三維結構增益微液滴內部混合器之研究
Mixing Enhancement Inside Micro-Droplets Using Three-Dimensional Micro-Channels
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: 微液滴微混合器微流體微粒子
外文關鍵詞: Micro-droplet, Micro-mixer, Micro-fluidics
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究主要是改變以往二維平面微管道結構的微液滴混合器,設計三維立體蜿蜒微管道結構的微液滴混合器。並與以往二維的結構做一個對照,藉此呈現本研究之三維立體蜿蜒微管道結構的微液滴混合器優於以往二維結構混合器之處。 本文所採用的研究方法是在微液滴內部加入微粒子(每個微粒子的直徑大約微1 μm),並觀察微粒子在微液滴內部的分佈情況來分析其混合結果。而量測方法主要是利用影像分析軟體去做分析。當微粒子存在微液滴內部時,會觀察到微粒子會有集中與分散的分佈,從圖片中分析得知在微液滴內部會有不同光強度分佈。本研究將所得之光強度數據與混合效率去做分析,藉此判斷三維立體蜿蜒結構的微液滴混合器其混合結果之優劣。 本實驗最初會先建立微液滴尺寸與流速比關係,以便日後做實驗可以減少須花費之時間。而本實驗所分析之參數有五組(以微液滴尺寸去做區分:200 μm、250 μm、300 μm、350 μm、400 μm),經由所呈現之實驗結果分析比較不同尺寸微液滴在二維管道結構與三維管道結構之混合效益。

    This study is focused on the investigation of mixing inside droplets in two- and three-dimensional serpentine micro-channels. Micro-particles are injected into micro-droplets. The micro-particle distributions inside micro-droplets through different micro-channel structure are discussed. The particles induce centralization and decentralization in the micro-droplets, and the mixing performance is investigated. The first experiment is to establish a relationship between mi-cro-droplet size and flow rate ratio. This relationship can be used to reduce operation time in following experimental steps. Five droplet sizes are selected in the experiment, namely, 200 μm, 250 μm,300 μm, 350 μm and 400 μm, re-spectively. The measured results in terms of mixing performance are analyzed and compared for the two-dimensional and three-dimensional structure. The experimental results show that the three-dimensional structure has better mixing performance.

    中文摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VIII 圖目錄 IX 符號表 XIV 第一章 緒論 1 1-1前言 1 1-2微機電系統 1 1-3微流體晶片 2 1-4微混合器之種類 3 1-5文獻回顧 4 1-5-1流體混合部分 4 1-5-2微液滴混合部分 6 1-6本文研究動機 15 1-7本文架構 16 第二章 基礎理論 17 2-1 微液滴(Micro-Droplet)的產生機制與基礎理論 17 2-2 微混合器之混合機制 18 2-2-1 二維結構與三維結構之混合方式比較 21 第三章 微液滴混合器之設計與實驗架構 23 3-1 晶片設計與光罩製作 23 3-1-1 晶片設計 23 3-1-2 光罩製作 23 3-2微流體晶片基材介紹與製作 24 3-2-1晶圓清潔 25 3-2-2光阻塗佈 25 3-2-3曝光 26 3-2-4顯影 26 3-2-5 微管道之母模翻模製程 27 3-2-6接合與對位 28 3-3實驗架構與量測分析方法 29 3-4晶片接合改良 31 3-5 流體與晶片尺寸介紹 32 第四章 實驗結果與討論 33 4-1 混合量測介紹 33 4-1-1本研究之混合結果量測分析法 34 4-2 微液滴大小與流速比之關係 38 4-3 二維與三維結構之混合效率量測方法與分析結果 40 4-3-1 微液滴在二維結構混合器之混合結果分析 40 4-3-2 微液滴在三維結構混合器之混合結果分析 47 4-3-3 二維結構與三維結構之混合結果分析 53 4-3-4 微液滴尺寸在微管道摺疊次數之混合結果分析 54 4-3-5 微管道的混合區摺疊次數之混合結果分析 56 4-4 實驗結果 60 第五章 結論與未來展望 61 5-1 結論 61 5-2 未來展望 62 參考文獻 63 自述 67

    [1]Feynman R., “There’s Plenty of Room at the Bottom”, Journal of Micro Electromechanical, 1, pp. 60-66, 1992.

    [2]Hessel V., Lowe H., Schonfeld F., “Micromixers-a Review on Passive and Active Mixing Principles”, Chemical Engineering Science, 60, pp. 2479-2501, 2005.

    [3]Mengeaud V., Josserand J., Girault H. H., “Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study”, Analytical Chemistry, 74, pp. 4279-4286, 2002.

    [4]Huang, M. Z., Yang, R. J., Tai, C. H., Tsai C. H. and Fu L. M., “Application of Electrokinetic Instability Flow for Enhanced Micromixing in Cross-Shaped Microchannel”, Biomedical Microdevices, 8, pp.309-315, 2006.

    [5]Oddy, M. H., Santiago J. G. and Mikkelsen J.C., “Electrokinetic Instability Micromixing”, Analytical Chemistry, 73, 24, pp. 5822-5832 , 2001.

    [6]Mijatovic D., Eijkel J. C. T. and Berg A., “Technologies for Nanofluidic Systems: Topdown vs. Bottom-Up-a Review”, Lab on a Chip, 5, pp. 492-500, 2005.

    [7]EvansJ., Liepmann D. and Pisano A.P., “Planar Laminar Mixer”, in Proc. IEEE MEMS Workshop , Nagoya, Janpan, pp. 96-101, 1997.

    [8]Evensen H.T., Meldrum D.R., Cunningham D.L., “Automated Fluid Mixing in Glass Capillaries”, Review of Scientific Instruments, 69, pp 519-526, 1998.

    [9]Moroney R.M.,White R.M. and Howe R.T., “Ultrasonically Induced Micro-transport”, in Proc. IEEE MEMS Workshop,Amsterdam, The Netherlands, pp. 277-282., 1991.

    [10]Branebjerg J., Gravesen P., Krog J.P. and Nielsen C.R., “Fast Mixing by Lamination”, in Proc.IEEE MEMS Workshop, San Diego, CA, pp.441-446., 1996.

    [11]Mensinger H., Richter T., Hessel V., Dopper J. and Ehrfeld W., “Microreactor with Integrated Static Mixer and Analysis System”, in Proc.Micro Total Anal. Syst.Workshop, Enschede, The Netherlands, pp.237-243., 1994.

    [12]Miyake R., Lammerink T. S. J., Elwenspoek M. and Fluitman J. H. J., “Micro-Mixer with Fast Diffusion”, in Proc.IEEE MEMS Workshop, Ft, Lauderdale,FL., pp. 248-253., 1993.

    [13]Xia H. M., Wan S. Y. M., Shu C., Chew Y. T., “Chaotic Mi cro-Mixers using Two-Layer Crossing Channels to Exhibit Fast Mixing at Low Rey-nolds Numbers”, Lab on a Chip, 5, pp. 748-755,2005.

    [14]Xia H. M., Shu C., Wan S. Y. M., Chew Y. T., “Influence of the Reynolds Number on Chaotic Mixing in a Spatially Periodic Micromixer and its Characterization using Dynamical System Techniques”, Journal Micromechanics and Microengineering , 16, pp. 53-61, 2006.

    [15]Lee Y. K., Deval J., Tabeling P. and Ho C. M., “Chaotic Mixing in Electrokinetically and Pressure Driven Micro-Flows”, The 14th IEEE Workshop on MEMS, 2001.

    [16]Engler M., Kockmann N., Kiefer T., Woias P., “Numerical and Experimental Investigations on Liquid Mixing in Static Micromixers”, Chemical Engineering Journal, 101, pp. 315-322, 2004.

    [17]Nguyen N.T., Wu Z.G., “Micromixers - a Review”, Journal of Microme-chanics and Microengineering, 15, pp. 1-16, 2005.

    [18]Hardt S., Drese K.S., Hessel V., Schonfeld F., “Passive Micromixers for Applications in the Microreactor and μTAS Fields”, Microfluids And Nanofluids, 1, pp. 108-118, 2005.

    [19]Tice J.D., Song H., Lyon A.D., Ismagilov R.F., “Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers”, Langmuir,19 , pp. 9127-9133, 2003.

    [20]Song H., Bringer M.R., Tice J.D., Gerdts C.J., Ismagilov R.F., “Experimental Test of Scaling of Mixing by Chaotic Advection in Droplets Moving Through Microfluidic Channels”, Applied Physics Letters, 83, 22, pp. 4664-4666, 2003.

    [21]Song H., Tice J.D., Ismagilov R.F., “A Microfluidic System for Controlling Reaction Networks in Time”, Angewandte Chemie-International Edition, 115, 7, pp. 791-796, 2003.

    [22]Liau A., Karnik R., Majumdar A., Cate J.H.D., J., “Mixing Crowded Bio-logical Solutions in Milliseconds”, Analytical Chemistry, Vol. 77, No. 23, pp. 7618-7625, 2005.

    [23]Fidalgo L.M., Abell C., Huck W.T.S., “Surface-Induced Droplet Fusion in Microfluidic Devices”, Lab on A Chip, 7, pp. 984–986, 2007.

    [24]Niu X., Gulati S., Edel J.B., deMello A.J., “Pillar-Induced Droplet Merging in Microfluidic Circuits”, Lab on a Chip, 8, pp.1837–1841, 2008.

    [25]Tung K.Y., Li C.C., Yang J.T., “Mixing and Hydrodynamic Analysis of a Droplet in a Planar Serpentine Micromixer”, Microfluid Nanofluid, 7, pp. 545–557, 2009.

    [26]Gupta A., Murshed S.M.S., Kumar R., “Droplet Formation and Stability of Flows in a Microfluidic T-junction”, Applied Physics Letters, 94, pp. 164107.1-164107.3, 2009.

    [27]Li W., Young E.W.K., Seo M., Nie Z., Garstecki P., Simmons C.A., Kumacheva E., “Simultaneous Generation of Droplets with Different Dimensions in Parallel Integrated Microfluidic Droplet Generators”, Soft Matter, 4, pp. 258–262, 2008.

    [28]Anna S.L., Bontoux N., Stone H.A., “Formation of Dispersions using ‘‘Flow Focusing’’ in Microchannels”, Applied Physics Letters, 82, 3, pp. 364-366, 2003.

    [29]Mary P., Studer V., Tabeling P.,”Microfluidic Droplet-Based Liquid-Liquid Extraction”, Analytical Chemistry, 80, 8, April 15, pp. 2680-2687, 2008.

    [30]Kamholz A. E. and Yager P., “Theoretical Analysis of Molecular Diffusion in Pressure-Driven Laminar Flow in Microfluidic Channels”, Biophysical Journal, 80, pp. 155-160, 2001.

    [31]Liu R. H., Stremler M. A., Sharp K. V., Olsen M. G., Santiago J. G., Adrian R.J., Aref H. and Beebe D. J., “Passive Mixing in a Three-Dimensionalserpentine Microchannel”, Journal of Microelectrome-chanical Systems, 9, pp. 190-197, 2000.

    [32]Stroock A. D., Dertinger S. K. W., Ajdari A., Mezic I., Stone H. A. andWhitesides G. M., “Chaotic Mixer for Microchannels”, Science, 295, pp.647-651., 2002.

    [33]Pan Y. J., Ren C. M., Yang R. J., “Electrokinetic flow focusing and valve-less switching integrated with electrokinetic instability for mixing enhancement”, Journal of Micromechanics and Microengineering, 17, pp. 820–827, 2007.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE