| 研究生: |
馮培瑄 Feng, Pei-Hsien |
|---|---|
| 論文名稱: |
熱處理路徑對於含有鎂基介在物低碳鋼種影響研究 Effect of Heat Treatment on Low Carbon Steel Contained Magnesium-Based Inclusions. |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 氧化物冶金 、針狀肥粒鐵 、鎂 、熱處理 、低碳鋼 |
| 外文關鍵詞: | oxide metallurgy, acicular ferrite, magnesium, heat treatment, low carbon steel |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用鋼中內生的介在物誘導針狀肥粒鐵 ( Acicular Ferrite ) 是提昇鋼種強度和韌性的重要方法。含鎂介在物具有高熔點、細小分散的特性,通過鎂對鋁脫氧鋼進行改質,提昇鋼液純淨度的同時,利用所生成的介在物來改善鋼鐵的韌性及焊接性能。
本研究結合了最新一代的鎂氧化物冶金以及誘導基地組織產生針狀肥粒鐵的概念,尋找 SS400 低碳鋼種於連鑄製程後的熱處理路徑,透過提昇鋼鐵中針狀肥粒鐵所占有的比例,改善鋼鐵的韌性。實驗過程以物理模擬方式使用小型試片取代傳統上依賴經驗累積的實驗方法,分析位移式相變態溫度區間中持溫溫度以及冷卻速度對針狀肥粒鐵形成的影響;透過基地組織分析、微組織介在物分析、性質測試等方式探討針狀肥粒鐵與鎂基複合介在物之間關係,制定最佳的熱軋、熱處理製程。
結果顯示以 20 °C / s 冷卻至450 °C 持溫的試片基地相含有 44 % 的針狀肥粒鐵組織,於 0 °C 下韌性較不含有針狀肥粒鐵的試片提高12.4 倍。 SEM照片發現了針狀肥粒鐵於 5 μm含鎂介在物上成核的證據,此類介在物周圍並沒有貧錳區的形成,其誘導針狀肥粒鐵成核機制尚有待討論。
In order to study the function of Mg-based inclusions on acicular ferrite forming and the influence of acicular ferrite on toughness in low carbon commercial steel, the heat treatment simulation was carried out on Gleeble-1500 in Al-killed low carbon steel (SS400) with Mg treatment. 7 ppm Magnesium was wire-fed into SS400 low-carbon steel in a tank degasser to fine-tune the composition of the steel and obtain fine particles. Microstructure of the steel after different heat treatment processes between 1300 °C and 400 °C were studied through OM, SEM, and EBSD. It was found that Mg-based complex inclusions could act as the nucleation sites of acicular ferrite. EBSD analysis shows that the ratio of acicular ferrite in the specimen after 20 °C / s cooling from 1300 °C to 450 °C was 44%. The toughness of this steel has raised 12.4 times compared to the one without acicular ferrite. EDS mapping shows that the Mn-depleted zone didn’t appear around this kind of inclusions, the proper mechanism of inducing acicular ferrite for magnesium- based inclusions need further discussion.
[1] 黃文星 與 付建勛, "鋼鐵冶煉之二次精煉與氧化物冶金", 合記圖書出版社, 新北市, 2012.
[2] Ø. Grong and D. K. Matlock, "Microstructural Development in Mild and Low-Alloy Steel Weld Metals", International Materials Reviews, vol. 31, pp. 27-48, 1986.
[3] J. S. Byun, J. H. Shim, J. Y. Suh, Y. J. Oh, Y. W. Cho, J. D. Shim and D. N. Lee, "Inoculated Acicular Ferrite Microstructure and Mechanical Properties", Materials Science and Engineering: A, vol. 319, pp. 326-331, 2001.
[4] H. Atkinson and G. Shi, "Characterization of Inclusions in Clean Steels: A Review Including the Statistics of Extremes Methods", Progress in Materials Science, vol. 48, pp. 457-520, 2003.
[5] Y. Sahai and T. Emi, "Tundish Technology for Clean Steel Production", World Scientific, Singapore, 2008.
[6] D. Y. Sheng, M. Söder, P. Jönsson and L. Jonsson, "Modeling Micro‐Inclusion Growth and Separation Ingas‐Stirred Ladles", Scandinavian Journal of Metallurgy, vol. 31, pp. 134-147, 2002.
[7] 蕭滋愛, "鋼鐵冶煉製程細小第二相粒子分佈之水模研究", 成功大學材料科學及工程學系碩士學位論文, 2010.
[8] D. Fairchild, D. Howden and W. Clark, "The Mechanism of Brittle Fracture in a Microalloyed Steel: Part I. Inclusion-Induced Cleavage", Metallurgical and Materials Transactions A, vol. 31, pp. 641-652, 2000.
[9] Y. E. Smith, A. P. Coldren and R. L. Cryderman, "Toward Improved Ductility and Toughness", Climax Molybdenum Company, Tokyo, 1972.
[10] 羅新傑, "結構用鋼胚中介在物之研究", 成功大學材料科學及工程學系碩士學位論文, 2012.
[11] 尹安遠 與 吳素君, "鋼中非金屬夾雜物的鑑定", 理化檢驗: 物理分册, vol. 43, pp. 395-398, 2007.
[12] 簡秀珊, "添加鎂對 SM570 鋼中介在物改質的影響", 成功大學材料科學及工程學系碩士學位論文, 2013.
[13] K. Zhu and Z. Yang, "Effect of Magnesium on the Austenite Grain Growth of the Heat-Affected Zone in Low-Carbon High-Strength Steels", Metallurgical and Materials Transactions A, vol. 42, pp. 2207-2213, 2011.
[14] 鄭國華, "鋼鐵材料設計與應用", 中國鑛冶工程學會與中國鋼鐵股份有限公司, 高雄市, 1996.
[15] C. Sims and F. Dahle, "Effect of Aluminum on the Properties of Medium Carbon Cast Steel", Transactions of the American Foundrymen's Association, vol. 46, pp. 65-132, 1938.
[16] R. Kiessling and N. Lange, "Non-Metallic Inclusions in Steel", Iron and Steel Institute London, London, 1966.
[17] C. M. Fan and W. S. Hwang, "Study of Optimal Ca-Si Injection Position in Gas Stirred Ladle Based on Water Model Experiment and Flow Simulation", Ironmaking and Steelmaking, vol. 29, pp. 415-426, 2002.
[18] R. W. K. Honeycombe and H. K. D. H. Bhadeshia, "Steels: Microstructure and Properties", Butterworth-Heinemann, London, 1981.
[19] J. Takamura and S. Mizoguchi, "Roles of Oxides in Steels Performance – Metallurgy of Oxides in Steels", Sixth International Iron and Steel Congress, vol. 1, p. 591, 1990.
[20] S. Ogibayashi, "Advances in Technology of Oxide Metallurgy", Nippon Steel Techenical Report, pp. 70-76, 1994.
[21] 黃薏文, "超級鋼冶煉製程及其應用知識庫系統", 成功大學材料科學及工程學系碩士學位論文, 2010.
[22] A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida and H. Yasui, "Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles", Nippon Steel Technical Report, vol. 380, pp. 2-5, 2004.
[23] Z. Chen, M. Loretto and R. Cochrane, "Nature of Large Precipitates in Titanium-Containing HSLA Steels", Materials Science and Technology, vol. 3, pp. 836-844, 1987.
[24] M. Prikryl, A. Kroupa, G. Weatherly and S. Subramanian, "Precipitation Behavior in a Medium Carbon, Ti-V-N Microalloyed Steel", Metallurgical and Materials Transactions A, vol. 27, pp. 1149-1165, 1996.
[25] W. Yan, Y. Shan and K. Yang, "Effect of TiN Inclusions on the Impact Toughness of Low-Carbon Microalloyed Steels", Metallurgical and Materials Transactions A, vol. 37, pp. 2147-2158, 2006.
[26] W. F. Smith, "Structure and Properties of Engineering Alloys", The McGraw-Hill Compainies, Bosten, p. 17, 1993.
[27] K. Yamamoto, T. Hasegawa and J. I. Takamura, "Effect of Boron on Intra-Granular Ferrite Formation in Ti-Oxide Bearing Steels", ISIJ International, vol. 36, pp. 80-86, 1996.
[28] J. L. Lee and Y. T. Pan, "Effect of Sulfur Content on the Microstructure and Toughness of Simulated Heat-Affected Zone in Ti-Killed Steels", Metallurgical Transactions A, vol. 24, pp. 1399-1408, 1993.
[29] S. Kimura, Y. Nabeshima, K. Nakajima and S. Mizoguchi, "Behavior of Nonmetallic Inclusions in Front of the Solid-Liquid Interface in Low-Carbon Steels", Metallurgical and Materials Transactions B, vol. 31, pp. 1013-1021, 2000.
[30] S. Kimura, K. Nakajima and S. Mizoguchi, "Behavior of Alumina-Magnesia Complex Inclusions and Magnesia Inclusions on the Surface of Molten Low-Carbon Steels", Metallurgical and Materials Transactions B, vol. 32, pp. 79-85, 2001.
[31] J. H. Ma, D. P. Zhan, Z. H. Jiang and J. C. He, "Effect of Ti, Al and Mg Addition on the Impact Toughness of Heat Affected Zone in Low Carbon Steel", Advanced Materials Research, vol. 79, pp. 143-146, 2009.
[32] F. Chai, C. F. Yang, H. Su, Y. Q. Zhang and Z. Xu, "Effect of Magnesium on Inclusion Formation in Ti-Killed Steels and Microstructural Evolution in Welding Induced Coarse-Grained Heat Affected Zone", Journal of Iron and Steel Research, International, vol. 16, pp. 69-74, 2009.
[33] S. Suzuki, K. Ichimiya and T. Akita, "High Tensile Strength Steel Plates with Excellent Haz Toughness for Shipbuilding: JFE EWEL Technology for Excellent Quality in Haz of High Heat Input Welded Joints", JFE technical report, vol. 5, pp. 24-29, 2005.
[34] R. Dolby, "Factors Controlling Weld Toughness—the Present Position, Part 2—Weld Metals", TWI Research Report, p.14, 1976.
[35] D. Edmonds and R. Cochrane, "Structure-Property Relationships in Bainitic Steels", Metallurgical Transactions A, vol. 21, pp. 1527-1540, 1990.
[36] J. Yang, C. Huang, C. Huang and J. Aoh, "Influence of Acicular Ferrite and Bainite Microstructures on Toughness for an Ultra-Low-Carbon Alloy Steel Weld Metal", Journal of Materials Science Letters, vol. 12, pp. 1290-1293, 1993.
[37] R. Ricks, P. Howell and G. Barritte, "The Nature of Acicular Ferrite in HSLA Steel Weld Metals", Journal of Materials Science, vol. 17, pp. 732-740, 1982.
[38] R. Farrar and P. Harrison, "Acicular Ferrite in Carbon-Manganese Weld Metals: An Overview", Journal of Materials Science, vol. 22, pp. 3812-3820, 1987.
[39] J. R. Yang and H. K. D. H. Bhadeshia, "Thermodynamic Analysis of Isothermal Transformation Diagrams", Advances in Welding Technology and Science, pp. 187-191, 1987.
[40] J. R. Yang and H. Bhadeshia, "Acicular Ferrite Transformation in Alloy-Steel Weld Metals", Journal of Materials Science, vol. 26, pp. 839-845, 1991.
[41] M. Strangwood and H. Bhadeshia, "The Mechanism of Acicular Ferrite Formation in Steel Weld Deposits", Advances in Welding Technology and Science, pp. 209-213, 1986.
[42] H. Bhadeshia and J. W. Christian, "Bainite in Steels", Metallurgical Transactions A, vol. 21, pp. 767-797, 1990.
[43] S. Babu and H. Bhadeshia, "Mechanism of the Transition from Bainite to Acicular Ferrite", Materials Transactions, JIM, vol. 32, pp. 679-688, 1991.
[44] D. S. Sarma, A. Karasev and P. Jonsson, "On the Role of Non-Metallic Inclusions in the Nucleation of Acicular Ferrite in Steels", ISIJ International, vol. 49, pp. 1063-1074, 2009.
[45] R. E. Reed-Hill and R. Abbaschian, "Physical Metallurgy Principles - Forth Edition", Cengage Learning, Stamford, 2008.
[46] G. Evans, "The Effect of Carbon on the Microstructure and Properties of C--Mn All-Weld Metal Deposits", Welding Research Abroad, vol. 19, pp. 13-24, 1983.
[47] Z. B. Yang, F. Wang, S. Wang and B. Song, "Intragranular Ferrite Formation Mechanism and Mechanical Properties of Non-Quenched-and-Tempered Medium Carbon Steels", Steel Research International, vol. 79, pp. 390-395, 2008.
[48] 楊占兵, 王森, 王福明 與 宋波, "冷卻速度對含 Ti 非調質鋼中晶内鐵素體形成的影響", 金属熱處理, vol. 33, pp. 24-24, 2008.
[49] I. Madariaga, I. Gutierrez, C. García de Andrés and C. Capdevila, "Acicular Ferrite Formation in a Medium Carbon Steel with a Two Stage Continuous Cooling", Scripta Materialia, vol. 41, pp. 229-235, 1999.
[50] J. Shim, Y. Cho, S. Chung, J. Shim and D. Lee, "Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel", Acta Materialia, vol. 47, pp. 2751-2760, 1999.
[51] J. L. Lee and Y. T. Pan, "The Formation of Intragranular Acicular Ferrite in Simulated Heat-Affected Zone", ISIJ International, vol. 35, pp. 1027-1033, 1995.
[52] T. K. Lee, H. Kim, B. Kang and S. Hwang, "Effect of Inclusion Size on the Nucleation of Acicular Ferrite in Welds", ISIJ International, vol. 40, pp. 1260-1268, 2000.
[53] J. L. Lee, "Evaluation of the Nucleation Potential of Intragranular Acicular Ferrite in Steel Weldments", Acta Metallurgica et Materialia, vol. 42, pp. 3291-3298, 1994.
[54] N. A. Fleck, Ø. Grong, G. R. Edwards and D. K. Matlock, "The Role of Filler Metal Wire and Flux Composition in Submerged-Arc Weld Metal Transformation Kinetics", Welding Journal, vol. 65, pp. S113-S121, 1986.
[55] J. Gregg and H. Bhadeshia, "Titanium-Rich Mineral Phases and the Nucleation of Bainite", Metallurgical and Materials Transactions A, vol. 25, pp. 1603-1611, 1994.
[56] J. Gregg and H. Bhadeshia, "Solid-State Nucleation of Acicular Ferrite on Minerals Added to Molten Steel", Acta Materialia, vol. 45, pp. 739-748, 1997.
[57] C. Chen, H. Xue, H. Peng, L. Yan, L. Zhi and S. Wang, "Inclusions and Microstructure of Steel Weld Deposits with Nanosize Titanium Oxide Addition", Journal of Nanomaterials, vol. 2014, pp. 2014.
[58] J. Byun, J. Shim, Y. Cho and D. Lee, "Non-Metallic Inclusion and Intragranular Nucleation of Ferrite in Ti-Killed C–Mn Steel", Acta Materialia, vol. 51, pp. 1593-1606, 2003.
[59] F. Barbaro, P. Krauklis and K. Easterling, "Formation of Acicular Ferrite at Oxide Particles in Steels", Materials Science and Technology, vol. 5, pp. 1057-1068, 1989.
[60] A. Mills, G. Thewlis and J. Whiteman, "Nature of Inclusions in Steel Weld Metals and Their Influence on Formation of Acicular Ferrite", Materials Science and Technology, vol. 3, pp. 1051-1061, 1987.
[61] H. Bhadeshia and A. Waugh, "Bainite: An Atom-Probe Study of the Incomplete Reaction Phenomenon", Acta Metallurgica, vol. 30, pp. 775-784, 1982.
[62] H. Bhadeshia, "A Rationalisation of Shear Transformations in Steels", Acta Metallurgica, vol. 29, pp. 1117-1130, 1981.
[63] H. Aaronson, G. Spanos, R. Masamura, R. Vardiman, D. Moon, E. Menon and M. Hall, "Sympathetic Nucleation: An Overview", Materials Science and Engineering: B, vol. 32, pp. 107-123, 1995.
[64] S. Ohkita and Y. Horii, "Recent Development in Controlling the Microstructure and Properties of Low-Alloy Steel Weld Metals", ISIJ International, vol. 35, pp. 1170-1182, 1995.
[65] H. Mabuchi, R. Uemori and M. Fujioka, "The Role of Mn Depletion in Intra-Granular Ferrite Transformation in the Heat Affected Zone of Welded Joints with Large Heat Input in Structural Steels", ISIJ International, vol. 36, pp. 1406-1412, 1996.
[66] J. H. Shim, Y. J. Oh, J. Y. Suh, Y. W. Cho, J. D. Shim, J. S. Byun and D. N. Lee, "Ferrite Nucleation Potency of Non-Metallic Inclusions in Medium Carbon Steels", Acta Materialia, vol. 49, pp. 2115-2122, 2001.
[67] 余聖甫, 雷毅, 謝明立, 黄安國 與 李志遠, "晶內鐵素體的形核機理", 鋼鐵研究學報, vol. 17, pp. 47-50, 2005.
[68] A. Bhatti, M. Saggese, D. Hawkins, J. Whiteman and M. Golding, "Analysis of Inclusions in Submerged Arc Welds in Microalloyed Steels", Welding Journal, vol. 63, pp. S224-S230, 1984.
[69] B. L. Bramfitt, "The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron", Metallurgical Transactions, vol. 1, pp. 1987-1995, 1970.
[70] G. A. Chadwick, "Metallography of Phase Transformations", Butterworth, London, 1972.
[71] I. Madariaga and I. Gutierrez, "Role of the Particle–Matrix Interface on the Nucleation of Acicular Ferrite in a Medium Carbon Microalloyed Steel", Acta Materialia, vol. 47, pp. 951-960, 1999.
[72] S. Zhang, N. Hattori, M. Enomoto and T. Tarui, "Ferrite Nucleation at Ceramic/Austenite Interfaces", ISIJ International, vol. 36, pp. 1301-1309, 1996.
[73] Ø. Grong and D. K. Matlock, "Microstructural Development in Mild and Low-Alloy Steel Weld Metals", International Materials Reviews, vol. 31, pp. 27-48, 1986.
[74] Z. Zhang and R. Farrar, "Role of Non-Metallic Inclusions in Formation of Acicular Ferrite in Low Alloy Weld Metals", Materials Science and Technology, vol. 12, pp. 237-260, 1996.
[75] T. Furuhara, J. Yamaguchi, N. Sugita, G. Miyamoto and T. Maki, "Nucleation of Proeutectoid Ferrite on Complex Precipitates in Austenite", ISIJ International, vol. 43, pp. 1630-1639, 2003.
[76] Ø. Grong, A. Kluken, H. Nylund, A. Dons and J. Hjelen, "Catalyst Effects in Heterogeneous Nucleation of Acicular Ferrite", Metallurgical and Materials Transactions A, vol. 26, pp. 525-534, 1995.
[77] 李東明, "不同冷卻速率對雙相不銹鋼顯微組織與衝擊試驗的影響", 中山大學材料科學研究所碩士學位論文, vol. pp. 2003.
[78] L. Ryde, "Application of EBSD to Analysis of Microstructures in Commercial Steels", Materials Science and Technology, vol. 22, pp. 1297-1306, 2006.
[79] J. Wu, P. J. Wray, C. I. Garcia, M. Hua and A. J. DeArdo, "Image Quality Analysis: A New Method of Characterizing Microstructures", ISIJ International, vol. 45, pp. 254-262, 2005.
[80] A. J. DeArdo, M. Hua, K. Cho and C. Garcia, "On Strength of Microalloyed Steels: An Interpretive Review", Materials Science and Technology, vol. 25, pp. 1074-1082, 2009.
[81] A. J. DeArdo, C. Garcia, K. Cho and M. Hua, "New Method of Characterizing and Quantifying Complex Microstructures in Steels", Materials and Manufacturing Processes, vol. 25, pp. 33-40, 2010.
[82] S. Zaefferer, P. Romano and F. Friedel, "EBSD as a Tool to Identify and Quantify Bainite and Ferrite in Low‐Alloyed Al‐Trip Steels", Journal of Microscopy, vol. 230, pp. 499-508, 2008.
[83] Y. M. Kim, H. Lee and N. J. Kim, "Transformation Behavior and Microstructural Characteristics of Acicular Ferrite in Linepipe Steels", Materials Science and Engineering: A, vol. 478, pp. 361-370, 2008.
[84] 牛濟泰, "材料和熱加工領域的物理模擬技術", 國防工業出版社, 北京, 1999.