| 研究生: |
朱志傑 Jhu, Jhih-Jie |
|---|---|
| 論文名稱: |
反應式共濺鍍鈦-矽-氮薄膜之微結構與機械性質研究 A Study on Microstructure and Mechanical Properties of Ti-Si-N Thin Flims by Reactive Co-sputtering |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 超硬薄膜 |
| 外文關鍵詞: | Ti-Si-N |
| 相關次數: | 點閱:112 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用反應式磁控濺鍍系統成長出鈦-矽-氮(Ti-Si-N)的三元奈米複合薄膜,並利用快速退火爐進行500℃的退火。。其主要在改變鈦功率、矽功率、氮氣流量百分比三種製程參數,對於此薄膜的微結構與機械性質的影響與關係,並比較退火前後機械性質之差異的熱穩定性質。
本實驗在調整鈦靶與矽靶功率,在搭配上不同比例的氮氣與氬氣混合氣體進行薄膜沉積後,以表面粗度儀量(α-step)測薄膜厚度,計算沉積速率;以低掠角X光繞射儀(GIXRD)分析其微結構與結晶相;以掃描式電子顯微鏡(SEM)觀察薄膜表面形貌;以能量散佈光譜儀(EDS)與歐傑電子能譜儀(AES)檢測薄膜化學成份與縱深分布的化學成份,最後以奈米壓痕器(Nanoindenter)檢測薄膜的機械性質。
實驗結果顯示,常溫製程下Ti-Si-N薄膜製作過程隨氮氣比例增加而濺鍍率減少,而薄膜表面形貌十分平整,微結構分析裡由Scherre’s formula計算的晶粒尺寸也在5nm以下,而經機械性質分析後,硬度最高可達47 GPa,代表韌性值的 / 可達0.789 。
熱穩定分析中,經過退火的試片表面會形成氧化反應,而使得表面出現顆粒,其晶粒尺寸約在20~30 nm,且硬度值、韌性値皆下降,而當氧化越嚴重,硬度值受到影響越大。在氮氣流量7 %時,機械性質最穩定且較不易受到氧化,硬度值最高亦可達33 GPa。
In this study, the nanocomposites of Ti-Si-N thin flims were prepared by reactive magnetron co-sputtering system and annealed by rapid thermal annealing (RTA) in 500℃. After annealing , the thin films were used to be examined thermal stability. The aim of articles is the effect of microstucture and mechanical properties of Ti-Si-N with different Ti power, Si power and N2 flow rates.
After composited Ti-Si-N thin flims with different power and Ar+ N2 atmosphere, we used α-step to measure the thickness of films and calculated deposition rate. The structure of films are characterized by Grazing Incidence X-ray diffraction (GIXRD). The chemical composition were investigated by energy dispersive spectrometry (EDS) and Auger electron spectroscopy (AES). Surface morphology were investigated by scanning electron microscopy (SEM).Mechanical properties of these films were investigated by nanoindenter.
The experiment result shows that deposited rate decreased with N2 flow rate increased. The films surface roughness was very smooth in each parameter. According to Scherre’s formula, the grain size of films was below 5nm. The hardness maximum value was 47 GPa and / ratio was 0.789.
After annealed, the films e appeared particles in specific parameter on the surface, the particle size were between 20 to 30 nm. However, for mechanical properties, the hardness were decreased due to the oxide. In N2 flow rate 7%, mechanical properties were most stable and oxide passivation , the hardness maximum was still 33 GPa.
[1] M. Diserens, J. Patscheider, F. Levy “Mechanical properties and oxidation resistance of nanocomposite TiN-SiNx physical-vapor-deposited thin films” Surface and Coatings Technology vol.120-121, pp.158-165, 1999
[2] S. Veprek and S. Reiprich, “A concept for the design of novel superhard coating”, Thin Solid Films, Vol. 268, pp. 64, 1995.
[3] S. Veprek, Ali S. Argon “Mechanical properties of superhard nanocomposites” Surface and Coatings Technology Vol. 146-147, pp. 175-182,2001
[4] S. Veprek, Maritza G.J. Veprek-Heijman, Pavla Karvankova, Jan Prochazka “Different approaches to superhard coatings and nanocomposites” Thin Solid Films Vol. 476, pp. 1-292, 2005
[5] S. Veprek, H.-D. Mnnling, P. Karvankova, J. Prochazka “The issue of the reproducibility of deposition of superhard nanocomposites with hardness of 50 GPa ” Surface & Coatings Technology, Vol. 200, pp. 3876-3885, 2006
[6] Paul Sunal , Russell Messier, Mark W. Horn “Reactive co-deposition of TiNx/SiNx nanocomposites using pulsed direct current magnetron sputtering” Thin Solid Films Vol. 515, pp.2185-2191,2006
[7] S. Veprek , S. Reiprich, and Li Shizhi “Superhard nanocrystalline composite materials: The TiN/ Si3N4 system” Appl. Phys. Lett. Vol 66 No.20, pp. 2640-2642, 1995
[8] A. Niederhofer, T. Bolom, P. Nesladek, K. Moto, Ch. Eggs, D.S. Patil, S. Veprek, “The role of percolation threshold for the control of the hardness and thermal stability of super- and ultrahard nanocomposites” Surf. Coat. Technol., Vol. 146-147, pp. 183, 2001
[9] Stan Veprek , Maritza G.J. Veprek-Heijman “The formation and role of interfaces in superhard nc-MeN/a- Si3N4 nanocomposites” Surface & Coatings Technology, Vol. 201, pp.6064-6070, 2007
[10] Young-Gu Kim, Junichi Tatami, Katsutoshi Komeya, Do Kyung Kim “Effect of the microstructure of Si3N4 on the adhesion strength of TiN film on Si3N4” Thin Solid Films, Vol.510, pp.222-228, 2006
[11] S. Veprek, M. Haussmann, S. Reiprich, S.Z. Li, J. Dian, “Novel thermodynamically stable and oxidation resistant superhard”Surf. Coat. Technol. , Vol. 86-87 , pp. 394, 1996
[12] J. An, Q.Y. Zhang “Structure, morphology and nanoindentation behavior of multilayered TiN/TaN coatings” Surface & Coatings Technology, Vol. 200 , 2451-2458, 2005
[13] P. Karvankova, M.G.J. Veprek-Heijman, O. Zindulka, S. Veprek,” Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: A comparative study of their properties”Surf. Coat. Technol., Vol. 163-164, 149 ,2003
[14] P. Karvankova, M.G.J. Veprek-Heijman, M.F. Zawrah, S. Veprek, “Thermal stability of nc-TiN/a-BN/a-TiB2 nanocomposite coatings deposited by plasma chemical vapor deposition” Thin Solid Films, Vol. 467,133-139,2004
[15] S. Veprek, M. Haussmann, S. Reiprich, “Superhard nanocrystalline W2N/amorphous Si3N4 composite materials” J. Vac. Sci. Technol., A, Vac. Surf. Films, Vol. 14, pp.46, 1996
[16] Stan Veprek “The search for novel, superhard materials” J. Vac. Sci. Technol. A Vol. 17, pp. 2401-2420, 1999
[17] Sheng-Min Yang , Yin-Yu Chang, Da-Yung Wang , Dong-Yih Lin , WeiTe Wu “Mechanical properties of nano-structured Ti-Si-N films synthesized by cathodic arc evaporation” Journal of Alloys and Compounds Vol. 440, pp.375-379, 2007
[18] J.R Roth , “Industrial plasma engineering- volume 1: priciples” ,Institute of physics publishing ,London,1995
[19] 莊達人 'VLSI製造技術'高立圖書出版, 2002
[20] P.B. Barna , M. Adamik “Fundamental structure forming phenomena of polycrystalline films and the structure zone models” Thin Solid Films ,Vol. 317, pp.27-33, 1998
[21] P.B. Barna, M. Adamik, J. Labar, L. Kover , J. Toth , A. Devenyi , R. Manaila “Formation of polycrystalline and microcrystalline composite thin films by codeposition and surface chemical reaction” Surface and Coatings Technology ,Vol. 125 ,pp. 147-150 ,2000
[22] R.F. Zhang , S. Veprek “On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system” Materials Science and Engineering A, Vol. 424, 128-137,2006
[23] M. Nose, Y. Deguchi, T. Mae, E. Honbo, T. Nagae, K. Nogi “Influence of sputtering conditions on the structure and properties of Ti–Si–N thin films prepared by r.f.-reactive sputtering” Surface and Coatings Technology, Vol. 174-175, pp. 261-265, 2003
[24] Jorg Patscheider, Thomas Zehnder, Matthieu Diserens “Structure-performance relations in nanocomposite coatings” Surface and Coatings Technology, Vol. 146 -147, pp. 201–208, 2001
[25] R. Chandra, Davinder Kaur, Amit Kumar Chawl ,N. Phinichk , Z.H. Barber “Texture development in Ti-Si-N nanocomposite thin films” Materials Science and Engineering A, Vol. 423,pp.111-115, 2006
[26] H.-D. Mannling, D.S. Patil,, K. Moto, M. Jilek, S. Veprek “Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides” Surface and Coatings Technology, Vol. 146-147, p.p263-267, 2001
[27] Avi Raveh, Ido Zukerman “Thermal stability of nanostructured superhard coatings” Surface & Coatings Technology,Vol. 201, pp.6136 -6142, 2005
[28] E.S. Puchi-Cabrera, J.A. Berros, D.G. Teer “On the computation of the absolute hardness of thin solid films” Surface and Coatings Technology, Vol. 157, pp.185-196 , 2002
[29] A. F. Jankowski, “Measurement of lattice strain in Au-Ni multilayers and correlation with biaxial modulus effects“ J. Appl. Phys. Vol. 71,pp. 1782-1789, 1992
[30] F.H. Mei, N. Shao, J.W. Dai, G.Y. Li “Coherent growth and superhardness effect of AlN/TiN nanomultilayers” Materials Letters, Vol.58, pp. 3477-3480, 2004
[31] J. Xu, M. Kamiko, Y. Zhou, R. Yamamoto, G. Li, and M. Gu, “Superhardness effects of heterostructure NbN/TaN nanostructured multilayers“ J. Appl. Phys. Vol. 89, pp.3674 ,2001.
[32] Volker Mohles, “Orowan process controlled dislocation glide in materials containing incoherent particles”, Materials Science and Engineering A, Vol. 309-310, pp. 265-269, 2001.
[33] A. Flink, T. Larsson ,J. Sjolen, L. Karlsson , L. Hultman “Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; evidence for cubic solid solutions and their thermal stability” Surface & Coatings Technology, Vol. 200, pp.1535-1542, 2005
[34] Dilip Chandrasekaran “Solid solution hardening -a comparison of two models” Materials Science and Engineering A, Vol. 309-310,pp. 184-189,2001.
[35] K.S. Kumar, H. Van Swygenhoven “Mechanical behavior of nanocrystalline metals and alloys” Acta Materialia, Vol. 51, 5743-5774, 2003